International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 12 (December 2020), Pages: 68-81

----------------------------------------------

 Review Paper

 Title: Review of petroleum sludge thermal treatment and utilization of ash as a construction material, a way to environmental sustainability

 Author(s): Mubarak Usman Kankia 1, Lavania Baloo 1, *, Bashar S. Mohammed 1, Suhaimi B. Hassan 2, Effa Affiana Ishak 1, Zakariyya Uba Zango 3

 Affiliation(s):

 1Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
 2Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
 3Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-4590-114X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.12.008

 Abstract:

Oil companies are largely responsible for producing a huge amount of petroleum sludge (PS), which is a major source of pollution in the environment. It is generated during oil extraction, processing, transportation, and cleaning activities. Environment Protection Act and Hazardous Wastes Handling Rules categorized petroleum sludge as hazardous waste because it consists of spent chemicals, wastewater, waste oil, mineral matter, and contaminated sand. This PS cannot be disposed of in a landfill, even after it is effectively de-oiled. However, PS treatment and disposal are serious threats for most refineries. Thus, the treatment became crucial. In this paper, a comprehensive review of PS sources, characteristics, environmental effects along with the comparative analyses of available thermal and disposal methods of PS treatment are presented. This review paper could enhance the essential knowledge and future guide for PS thermal and disposal techniques. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Petroleum sludge, Thermal treatment, Petroleum sludge ash, Concrete

 Article History: Received 16 April 2020, Received in revised form 20 July 2020, Accepted 30 July 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

  Kankia MU, Baloo L, and Mohammed BS et al. (2020). Review of petroleum sludge thermal treatment and utilization of ash as a construction material, a way to environmental sustainability. International Journal of Advanced and Applied Sciences, 7(12): 68-81

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4

 Tables

 Table 1 Table 2 

----------------------------------------------

 References (100)

  1. Abdurahman HN and Yunus RM (2006). A continuous microwave heating of water-in-oil emulsions: An experimental study. Applied Science, 6(8): 1868-1872. https://doi.org/10.3923/jas.2006.1868.1872   [Google Scholar]
  2. Aguelmous A, El Fels L, Souabi S, Zamama M, Yasri A, Lebrihi A, and Hafidi M (2018). Petroleum sludge bioremediation and its toxicity removal by landfill in gunder semi-arid conditions. Ecotoxicology and Environmental Safety, 166: 482-487. https://doi.org/10.1016/j.ecoenv.2018.09.106   [Google Scholar] PMid:30312947
  3. Akhtar J and Amin NS (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7): 5101-5109. https://doi.org/10.1016/j.rser.2012.05.033   [Google Scholar]
  4. Al-Futaisi A, Jamrah A, Yaghi B, and Taha R (2007). Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. Journal of Hazardous Materials, 141(3): 557-564. https://doi.org/10.1016/j.jhazmat.2006.07.023   [Google Scholar] PMid:16959405
  5. Al-Mutairi N, Bufarsan A, and Al-Rukaibi F (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1): 142-148. https://doi.org/10.1016/j.chemosphere.2008.08.020   [Google Scholar] PMid:18824252
  6. Arazo RO, Genuino DAD, de Luna MDG, and Capareda SC (2017). Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustainable Environment Research, 27(1): 7-14. https://doi.org/10.1016/j.serj.2016.11.010   [Google Scholar]
  7. Arimoro FO, Chukwuji MAI, and Ogheneghalome O (2008). Effects of industrial waste water on the physical and chemical characteristics of a tropical coastal river. Environmental Sciences, 2(3): 209-220. https://doi.org/10.3923/rjes.2008.209.220   [Google Scholar]
  8. Ayotamuno MJ, Okparanma RN, Nweneka EK, Ogaji SOT, and Probert SD (2007). Bio-remediation of a sludge containing hydrocarbons. Applied Energy, 84(9): 936-943. https://doi.org/10.1016/j.apenergy.2007.02.007   [Google Scholar]
  9. Boikova T, Solovyov D, and Solovyova V (2017). Concrete for road pavements. Procedia Engineering, 189: 800-804. https://doi.org/10.1016/j.proeng.2017.05.124   [Google Scholar]
  10. Bridgwater AV (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51(1-2): 3-22. https://doi.org/10.1016/S0165-2370(99)00005-4   [Google Scholar]
  11. Burnham AK and Dinh LN (2007). A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. Journal of Thermal Analysis and Calorimetry, 89(2): 479-490. https://doi.org/10.1007/s10973-006-8486-1   [Google Scholar]
  12. Butler E, Devlin G, Meier D, and McDonnell K (2011). A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews, 15(8): 4171-4186. https://doi.org/10.1016/j.rser.2011.07.035   [Google Scholar]
  13. Caldwell RJ, Cote PL, and Chao CC (1990). Investigation of solidification for the immobilization of trace organic contaminants. Hazardous Waste and Hazardous Materials, 7(3): 273-282. https://doi.org/10.1089/hwm.1990.7.273   [Google Scholar]
  14. Campuzano F, Brown RC, and Martínez JD (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102: 372-409. https://doi.org/10.1016/j.rser.2018.12.014   [Google Scholar]
  15. Chang CY, Shie JL, Lin JP, Wu CH, Lee DJ, and Chang CF (2000). Major products obtained from the pyrolysis of oil sludge. Energy and Fuels, 14(6): 1176-1183. https://doi.org/10.1021/ef0000532   [Google Scholar]
  16. Cheng S, Wang Y, Fumitake T, Kouji T, Li A, and Kunio Y (2017). Effect of steam and oil sludge ash additive on the products of oil sludge pyrolysis. Applied Energy, 185: 146-157. https://doi.org/10.1016/j.apenergy.2016.10.055   [Google Scholar]
  17. Coats AW and Redfern JP (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914): 68-69. https://doi.org/10.1038/201068a0   [Google Scholar]
  18. Coca J, Gutiérrez G, and Benito J (2011). Treatment of oily wastewater. In: Coca-Prados J and Gutiérrez-Cervelló G (Eds.), Water purification and management: 1-55. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-90-481-9775-0_1   [Google Scholar]
  19. Deng S, Wang X, Tan H, Mikulčić H, Li Z, Cao R, and Vujanović M (2015). Experimental and modeling study of the long cylindrical oily sludge drying process. Applied Thermal Engineering, 91: 354-362. https://doi.org/10.1016/j.applthermaleng.2015.08.054   [Google Scholar]
  20. Fitri I, Ni’matuzahroh and Surtiningsih T (2017). Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method. In the International Biology Conference, AIP Publishing LLC, 1854: 020011. https://doi.org/10.1063/1.4985402   [Google Scholar]
  21. Font R and Garrido MA (2018). Friedman and n-reaction order methods applied to pine needles and polyurethane thermal decompositions. Thermochimica Acta, 660: 124-133. https://doi.org/10.1016/j.tca.2018.01.002   [Google Scholar]
  22. Fonts I, Gea G, Azuara M, Ábrego J, and Arauzo J (2012). Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews, 16(5): 2781-2805. https://doi.org/10.1016/j.rser.2012.02.070   [Google Scholar]
  23. Friedman HL (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6: 183-195. https://doi.org/10.1002/polc.5070060121   [Google Scholar]
  24. García AN, Font R, and Esperanza MM (2001). Thermogravimetric kinetic model of the combustion of a varnish waste based on polyurethane. Energy and Fuels, 15(4): 848-855. https://doi.org/10.1021/ef000236o   [Google Scholar]
  25. Ghaleb AAS, Kutty SRM, Ho YC, Jagaba AH, Noor A, Al-Sabaeei AM, and Almahbashi NMY (2020). Response surface methodology to optimize methane production from mesophilic anaerobic co-digestion of oily-biological sludge and sugarcane bagasse. Sustainability, 12(5): 2116. https://doi.org/10.3390/su12052116   [Google Scholar]
  26. Gong Z, Du A, Wang Z, Fang P, and Li X (2017). Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor. Energy and Fuels, 31(8): 8102-8108. https://doi.org/10.1021/acs.energyfuels.7b01363   [Google Scholar]
  27. Gong Z, Wang Z, Wang Z, Fang P, and Meng F (2018). Study on pyrolysis characteristics of tank oil sludge and pyrolysis char combustion. Chemical Engineering Research and Design, 135: 30-36. https://doi.org/10.1016/j.cherd.2018.05.027   [Google Scholar]
  28. Guda VK, Steele PH, Penmetsa VK, and Li Q (2015). Fast pyrolysis of biomass: Recent advances in fast pyrolysis technology. In: Pandey A, Bhaskar T, Stöcker M, and Sukumaran R (Eds.), Recent advances in thermo-chemical conversion of biomass: 177-211. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-444-63289-0.00007-7   [Google Scholar]
  29. Hansen J, Reed C, Scudese M, Lazarus L, and Park F (1994). Technical assistance document for complying with the TC rule and implementing the toxicity characteristic leaching procedure (TCLP). Report No. EPA-902-B-94-001, United States Environmental Protection Agency, Washington, USA.   [Google Scholar]
  30. Heath GM, Heath RA, and Dundr Z (2004). Paraffinic sludge reduction in crude oil storage tanks through the use of shearing and resuspension. Acta Montanistica Slovaca, 9: 184-188.   [Google Scholar]
  31. Hu G, Li J, and Zeng G (2013). Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials, 261: 470-490. https://doi.org/10.1016/j.jhazmat.2013.07.069   [Google Scholar] PMid:23978722
  32. Hu J, Gan J, Li J, Luo Y, Wang G, Wu L, and Gong Y (2017). Extraction of crude oil from petrochemical sludge: Characterization of products using thermogravimetric analysis. Fuel, 188: 166-172. https://doi.org/10.1016/j.fuel.2016.09.068   [Google Scholar]
  33. Huang M, Ying X, Shen D, Feng H, Li N, Zhou Y, and Long Y (2017). Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker. Construction and Building Materials, 152: 226-231. https://doi.org/10.1016/j.conbuildmat.2017.06.157   [Google Scholar]
  34. Islam B (2015). Petroleum sludge, its treatment and disposal: A review. International Journal of Chemical Sciences, 13(4): 1584-1602.   [Google Scholar]
  35. Jagaba AH, Shuaibu A, Umaru I, Musa S, Lawal IM, and Abubakar S (2019). Stabilization of soft soil by incinerated sewage sludge ash from municipal wastewater treatment plant for engineering construction. Sustainable Structures and Materials, an International Journal, 2(1): 32-44.   [Google Scholar]
  36. Jiang L, Zhang D, Li M, He JJ, Gao ZH, Zhou Y, and Sun JH (2018). Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel, 222: 11-20. https://doi.org/10.1016/j.fuel.2018.02.143   [Google Scholar]
  37. Johnson OA, Affam AC, Johnson OA, and Affam AC (2018). Petroleum sludge treatment and disposal: A review. Environmental Engineering Research, 24(2): 191-201. https://doi.org/10.4491/eer.2018.134   [Google Scholar]
  38. Johnson OA, Napiah M, and Kamaruddin I (2014). Potential uses of waste sludge in construction industry: A review. Research Journal of Applied Sciences, Engineering and Technology, 8(4): 565-570. https://doi.org/10.19026/rjaset.8.1006   [Google Scholar]
  39. Kabay N, Tufekci MM, Kizilkanat AB, and Oktay D (2015). Properties of concrete with pumice powder and fly ash as cement replacement materials. Construction and Building Materials, 85: 1-8. https://doi.org/10.1016/j.conbuildmat.2015.03.026   [Google Scholar]
  40. Karamalidis AK and Voudrias EA (2007). Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs. Journal of Hazardous Materials, 148(1-2): 122-135. https://doi.org/10.1016/j.jhazmat.2007.02.032   [Google Scholar] PMid:17466451
  41. Karamalidis AK and Voudrias EA (2008). Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement: Part I. Experimental results. Environmental Science and Technology, 42(16): 6116-6123. https://doi.org/10.1021/es703063b   [Google Scholar] PMid:18767675
  42. Karayildirim T, Yanik J, Yuksel M, and Bockhorn H (2006). Characterisation of products from pyrolysis of waste sludges. Fuel, 85(10-11): 1498-1508. https://doi.org/10.1016/j.fuel.2005.12.002   [Google Scholar]
  43. Khalil NM, Algamal Y, and Saleem QM (2018). Exploitation of petroleum waste sludge with local bauxite raw material for producing high-quality refractory ceramics. Ceramics International, 44(15): 18516-18527. https://doi.org/10.1016/j.ceramint.2018.07.072   [Google Scholar]
  44. Krutof A and Hawboldt K (2016). Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review. Renewable and Sustainable Energy Reviews, 59: 406-419. https://doi.org/10.1016/j.rser.2015.12.304   [Google Scholar]
  45. Lefebvre J, Duquesne S, Mamleev V, Bras ML, and Delobel R (2003). Study of the kinetics of pyrolysis of a rigid polyurethane foam: Use of the invariant kinetics parameters method. Polymers for Advanced Technologies, 14(11‐12): 796-801. https://doi.org/10.1002/pat.397   [Google Scholar]
  46. Leonard SA and Stegemann JA (2010). Stabilization/solidification of petroleum drill cuttings: Leaching studies. Journal of Hazardous Materials, 174(1-3): 484-491. https://doi.org/10.1016/j.jhazmat.2009.09.078   [Google Scholar] PMid:19815345
  47. Li X, He C, Bai Y, Ma B, Wang G, and Tan H (2014). Stabilization/solidification on chromium (III) wastes by C3A and C3A hydrated matrix. Journal of Hazardous Materials, 268: 61-67. https://doi.org/10.1016/j.jhazmat.2014.01.002   [Google Scholar] PMid:24468527
  48. Lim ACR, Chin BLF, Jawad ZA, and Hii KL (2016). Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engineering, 148: 1247-1251. https://doi.org/10.1016/j.proeng.2016.06.486   [Google Scholar]
  49. Lin B, Huang Q, Ali M, Wang F, Chi Y, and Yan J (2019). Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil. Proceedings of the Combustion Institute, 37(3): 3101-3108. https://doi.org/10.1016/j.proci.2018.05.143   [Google Scholar]
  50. Lin B, Huang Q, and Chi Y (2018). Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Processing Technology, 177: 275-282. https://doi.org/10.1016/j.fuproc.2018.05.002   [Google Scholar]
  51. Lin B, Wang J, Huang Q, and Chi Y (2017). Effects of potassium hydroxide on the catalytic pyrolysis of oily sludge for high-quality oil product. Fuel, 200: 124-133. https://doi.org/10.1016/j.fuel.2017.03.065   [Google Scholar]
  52. Liu J, Jiang X, Zhou L, Han X, and Cui Z (2009). Pyrolysis treatment of oil sludge and model-free kinetics analysis. Journal of Hazardous Materials, 161(2-3): 1208-1215. https://doi.org/10.1016/j.jhazmat.2008.04.072   [Google Scholar] PMid:18514401
  53. Ma Z, Xie J, Gao N, and Quan C (2019). Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis. Journal of the Energy Institute, 92(4): 1053-1063. https://doi.org/10.1016/j.joei.2018.07.001   [Google Scholar]
  54. Marshall ASJ, Wu PF, Mun SH, and Lalonde C (2014). Commercial application of pyrolysis technology in agriculture. In the American Society of Agricultural and Biological Engineers, Montreal, Canada.   [Google Scholar]
  55. Matayeva A, Basile F, Cavani F, Bianchi D, and Chiaberge S (2019). Development of upgraded bio-oil via liquefaction and pyrolysis. Studies in Surface Science and Catalysis, 178: 231-256. https://doi.org/10.1016/B978-0-444-64127-4.00012-4   [Google Scholar]
  56. Mohan D, Pittman Jr CU, and Steele PH (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3): 848-889. https://doi.org/10.1021/ef0502397   [Google Scholar]
  57. Moharir RV, Gautam P, and Kumar S (2019). Waste treatment processes/technologies for energy recovery. In: Wong JW, Tyagi RD, and Pandey A (Eds.), Current developments in biotechnology and bioengineering: 53-77. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-444-64083-3.00004-X   [Google Scholar]
  58. Nagrockienė D, Girskas G, and Skripkiūnas G (2017). Properties of concrete modified with mineral additives. Construction and Building Materials, 135: 37-42. https://doi.org/10.1016/j.conbuildmat.2016.12.215   [Google Scholar]
  59. Nazem MA and Tavakoli O (2017). Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology. The Journal of Supercritical Fluids, 127: 33-40. https://doi.org/10.1016/j.supflu.2017.03.020   [Google Scholar]
  60. Nguyen TBT, Chatchawan R, Saengsoy W, Tangtermsirikul S, and Sugiyama T (2019). Influences of different types of fly ash and confinement on performances of expansive mortars and concretes. Construction and Building Materials, 209: 176-186. https://doi.org/10.1016/j.conbuildmat.2019.03.032   [Google Scholar]
  61. Orava J and Greer AL (2015). Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry. Thermochimica Acta, 603: 63-68. https://doi.org/10.1016/j.tca.2014.06.021   [Google Scholar]
  62. Pánek P, Kostura B, Čepeláková I, Koutník I, and Tomšej T (2014). Pyrolysis of oil sludge with calcium-containing additive. Journal of Analytical and Applied Pyrolysis, 108: 274-283. https://doi.org/10.1016/j.jaap.2014.04.005   [Google Scholar]
  63. Pazoki M and Hasanidarabadi B (2017). Management of toxic and hazardous contents of oil sludge in Siri Island. Global Journal of Environmental Science and Management, 3(1): 33-42.   [Google Scholar]
  64. Peacocke GVC and Bridgwater AV (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4: 1-73. https://doi.org/10.1016/S1364-0321(99)00007-6   [Google Scholar]
  65. Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, and Yperman J (2009). Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 88(8): 1344-1350. https://doi.org/10.1016/j.fuel.2009.02.020   [Google Scholar]
  66. Punnaruttanakun P, Meeyoo V, Kalambaheti C, Rangsunvigit P, Rirksomboon T, and Kitiyanan B (2003). Pyrolysis of API separator sludge. Journal of Analytical and Applied Pyrolysis, 68: 547-560. https://doi.org/10.1016/S0165-2370(03)00033-0   [Google Scholar]
  67. Ramirez D and Collins CD (2018). Maximisation of oil recovery from an oil-water separator sludge: Influence of type, concentration, and application ratio of surfactants. Waste Management, 82: 100-110. https://doi.org/10.1016/j.wasman.2018.10.016   [Google Scholar] PMid:30509571
  68. Reddy MV, Devi MP, Chandrasekhar K, Goud RK, and Mohan SV (2011). Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis. Journal of Hazardous Materials, 197: 80-87. https://doi.org/10.1016/j.jhazmat.2011.09.061   [Google Scholar] PMid:22019106
  69. Robertson SJ, McGill WB, Massicotte HB, and Rutherford PM (2007). Petroleum hydrocarbon contamination in boreal forest soils: A mycorrhizal ecosystems perspective. Biological Reviews, 82(2): 213-240. https://doi.org/10.1111/j.1469-185X.2007.00012.x   [Google Scholar] PMid:17437558
  70. Roy P and Dias G (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77: 59-69. https://doi.org/10.1016/j.rser.2017.03.136   [Google Scholar]
  71. Rubio-Cintas MD, Barnett SJ, Perez-García F, and Parron-Rubio ME (2019). Mechanical-strength characteristics of concrete made with stainless steel industry wastes as binders. Construction and Building Materials, 204: 675-683. https://doi.org/10.1016/j.conbuildmat.2019.01.166   [Google Scholar]
  72. Schmidt H and Kaminsky W (2001). Pyrolysis of oil sludge in a fluidised bed reactor. Chemosphere, 45(3): 285-290. https://doi.org/10.1016/S0045-6535(00)00542-7   [Google Scholar]
  73. Shen Y, Chen X, Wang J, Ge X, and Chen M (2016). Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel, 182: 871-878. https://doi.org/10.1016/j.fuel.2016.05.102   [Google Scholar]
  74. Shie JL, Chang CY, Lin JP, Lee DJ, and Wu CH (2002). Use of inexpensive additives in pyrolysis of oil sludge. Energy and Fuels, 16(1): 102-108. https://doi.org/10.1021/ef0100810   [Google Scholar]
  75. Shie JL, Chang CY, Lin JP, Wu CH, and Lee DJ (2000). Resources recovery of oil sludge by pyrolysis: Kinetics study. Journal of Chemical Technology and Biotechnology, 75(6): 443-450. https://doi.org/10.1002/1097-4660(200006)75:6<443::AID-JCTB228>3.0.CO;2-B   [Google Scholar]
  76. Shie JL, Lin JP, Chang CY, Lee DJ, and Wu CH (2003). Pyrolysis of oil sludge with additives of sodium and potassium compounds. Resources, Conservation and Recycling, 39(1): 51-64. https://doi.org/10.1016/S0921-3449(02)00120-9   [Google Scholar]
  77. Shie JL, Lin JP, Chang CY, Shih SM, Lee DJ, and Wu CH (2004b). Pyrolysis of oil sludge with additives of catalytic solid wastes. Journal of Analytical and Applied Pyrolysis, 71(2): 695-707. https://doi.org/10.1016/j.jaap.2003.10.001   [Google Scholar]
  78. Shie JL, Lin JP, Chang CY, Wu CH, Lee DJ, Chang CF, and Chen YH (2004a). Oxidative thermal treatment of oil sludge at low heating rates. Energy and Fuels, 18(5): 1272-1281. https://doi.org/10.1021/ef0301811   [Google Scholar]
  79. Silva DC, Silva AA, Melo CF, and Marques MRC (2017). Production of oil with potential energetic use by catalytic co-pyrolysis of oil sludge from offshore petroleum industry. Journal of Analytical and Applied Pyrolysis, 124: 290-297. https://doi.org/10.1016/j.jaap.2017.01.021   [Google Scholar]
  80. Silva DDC, dos Santos Lucas CR, de Moraes Juviniano HB, de Alencar Moura MCP, de Castro Dantas TN, and Neto AAD (2019). Analysis of the use of microemulsion systems to treat petroleum sludge from a water flotation unit. Journal of Environmental Chemical Engineering, 7(1): 102934. https://doi.org/10.1016/j.jece.2019.102934   [Google Scholar]
  81. Silva DLJ, Alves FC, and de França FP (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Management and Research, 30(10): 1016-1030. https://doi.org/10.1177/0734242X12448517   [Google Scholar] PMid:22751947
  82. Sotoudehniakarani F, Alayat A, and McDonald AG (2019). Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae. Journal of Analytical and Applied Pyrolysis, 139: 258-273. https://doi.org/10.1016/j.jaap.2019.02.014   [Google Scholar]
  83. Suleimanov RR, Gabbasova IM, and Sitdikov RN (2005). Changes in the properties of oily gray forest soil during biological reclamation. Biology Bulletin, 32(1): 93–99. https://doi.org/10.1007/s10525-005-0014-5   [Google Scholar]
  84. Tang S, Zheng C, Yan F, Shao N, Tang Y, and Zhang Z (2018). Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals. Energy, 153: 921-932. https://doi.org/10.1016/j.energy.2018.04.108   [Google Scholar]
  85. Trofimov SY and Rozanova MS (2003). Transformation of soil properties under the impact of oil pollution. Eurasian Soil Science, 36: S82-S87.   [Google Scholar]
  86. Uluisik RC, Akbas N, Lukat-Rodgers GS, Adrian SA, Allen CE, Schmitt MP, and Dixon DW (2017). Characterization of the second conserved domain in the heme uptake protein HtaA from Corynebacterium diphtheriae. Journal of Inorganic Biochemistry, 167: 124-133. https://doi.org/10.1016/j.jinorgbio.2016.11.027   [Google Scholar] PMid:27974280 PMCid:PMC5199035
  87. Utsev JT and Taku JK (2012). Coconut shell ash as partial replacement of ordinary Portland cement in concrete production. International Journal of Scientific and Technology Research, 1(8): 86-89.   [Google Scholar]
  88. Wake H (2005). Oil refineries: A review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62(1-2): 131-140. https://doi.org/10.1016/j.ecss.2004.08.013   [Google Scholar]
  89. Wang F, Zhu S, and Gong X (2015). Gasification of oily sludge in supercritical water. Oxidation Communications, 38(3): 1391-1400.   [Google Scholar]
  90. Wang H, Wang QS, He JJ, Mao ZL, and Sun JH (2013b). Study on the pyrolytic behaviors and kinetics of rigid polyurethane foams. Procedia Engineering, 52: 377-385. https://doi.org/10.1016/j.proeng.2013.02.156   [Google Scholar]
  91. Wang J, Sun C, Lin BC, Huang QX, Ma ZY, Chi Y, and Yan JH (2018a). Micro-and mesoporous-enriched carbon materials prepared from a mixture of petroleum-derived oily sludge and biomass. Fuel Processing Technology, 171: 140-147. https://doi.org/10.1016/j.fuproc.2017.11.013   [Google Scholar]
  92. Wang W, Zhang X, and Li Y (2013a). Study of co-pyrolysis characteristics of lignite and rice husk in a TGA and a fixed-bed reactor. International Journal of Chemical Reactor Engineering, 11(1): 479-488. https://doi.org/10.1515/ijcre-2013-0049   [Google Scholar]
  93. Wang X, Wang Q, Wang S, Li F, and Guo G (2012). Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresource Technology, 111: 308-315. https://doi.org/10.1016/j.biortech.2012.01.158   [Google Scholar] PMid:22357295
  94. Wang Z, Gong Z, Wang Z, Fang P, and Han D (2018b). A TG-MS study on the coupled pyrolysis and combustion of oil sludge. Thermochimica Acta, 663: 137-144. https://doi.org/10.1016/j.tca.2018.03.019   [Google Scholar]
  95. Xiao W, Yao X, and Zhang F (2019). Recycling of oily sludge as a roadbed material utilizing phosphogypsum-based cementitious materials. Advances in Civil Engineering, 2019: 6280715. https://doi.org/10.1155/2019/6280715   [Google Scholar]
  96. Young LY and Cerniglia CE (1995). Microbial transformation and degradation of toxic organic chemicals. Volume 15, Wiley-Liss, New York, USA.   [Google Scholar]
  97. Zain AM, Shaaban MG, and Mahmud H (2010). Immobilization of petroleum sludge incorporating Portland cement and rice husk ash. International Journal of Chemical Engineering and Applications, 1: 234-240. https://doi.org/10.7763/IJCEA.2010.V1.40   [Google Scholar]
  98. Zhang Z and Matharu AS (2018). Thermochemical valorization of paper deinking residue through microwave-assisted pyrolysis. In: Bhaskar T, Pandey A, Mohan SV, Lee DJ, and Khanal SK (Eds.), Waste biorefinery: 671-692. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-444-63992-9.00023-9   [Google Scholar]
  99. Zhou L, Jiang X, and Liu J (2009). Characteristics of oily sludge combustion in circulating fluidized beds. Journal of Hazardous Materials, 170(1): 175-179. https://doi.org/10.1016/j.jhazmat.2009.04.109   [Google Scholar] PMid:19482424
  100. Zhou X, Jia H, Qu C, Fan D, and Wang C (2017). Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: Effect of agricultural biomass. Environmental Technology, 38(3): 361-369. https://doi.org/10.1080/09593330.2016.1194481   [Google Scholar] PMid:27242020