International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 10 (October 2020), Pages: 20-29

----------------------------------------------

 Review Paper

 Title: CRISPR/Cas9: The new era of gene therapy

 Author(s): Amal Alotaibi *

 Affiliation(s):

 Department of Basic Health Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-9819-447X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.10.003

 Abstract:

The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) system is present in many Bacteria and in almost all Archaea and functions in those organisms as a defense mechanism against invading viruses and plasmids. Since the function and the working mechanism of the bacterial CRISPR/Cas system were elucidated in 2007, and researchers realized its potential as a gene-editing tool in 2012, it quickly became a widely used tool to generate mutations in cells, cell lines, and various model organisms. Applications such as improvement of disease resistance of economic plants, enhancement of muscle growth, or litter size in livestock are already becoming common practice. More recently, its application to repair genetic mutations has been explored in human cells and cell lines, and currently, the first clinical trials are underway in which the CRISPR/Cas9 system is applied to cure patients from various diseases. When looking at the timeline, it is clear that the CRISPR/Cas9 system has revolutionized genome engineering in less than a decade and may well be the most versatile genome engineering tool available. Here we review the origin and function of the CRISPR/Cas9 system, its working mechanism, and its use in various model organisms. In addition, pitfalls of the method are discussed, as well as the currently running and planned clinical trials. The objectives of this review are: first, to inform readers of the working mechanism of this new technique and how it is currently used to facilitate research in model organisms and to improve the profitability of livestock and economic plants. And second, to provide insight into the application of this technique in the treatment of disease in humans. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: CRISPR/Cas9, Gene therapy, Gene editing

 Article History: Received 9 February 2020, Received in revised form 10 June 2020, Accepted 11 June 2020

 Acknowledgment:

This research was funded by the Deanship of Scientific Research at Princess Nourah, bint Abdulrahman University through the Fast-track Research Funding Program.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Alotaibi A (2020). CRISPR/Cas9: The new era of gene therapy. International Journal of Advanced and Applied Sciences, 7(10): 20-29

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2

 Tables

 Table 1

----------------------------------------------

 References (74)

  1. Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, and Schneider T (2011). Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood, the Journal of the American Society of Hematology, 117(10): 2791-2799. https://doi.org/10.1182/blood-2010-09-309591   [Google Scholar] PMid:21148083
  2. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, and Liu DR (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785): 149-157. https://doi.org/10.1038/s41586-019-1711-4   [Google Scholar] PMid:31634902 PMCid:PMC6907074
  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, and Horvath P (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819): 1709-1712. https://doi.org/10.1126/science.1138140   [Google Scholar] PMid:17379808
  4. Bassett AR, Tibbit C, Ponting CP, and Liu JL (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports, 4(1): 220-228. https://doi.org/10.1016/j.celrep.2013.06.020   [Google Scholar] PMid:23827738 PMCid:PMC3714591
  5. Baylis F and McLeod M (2017). First-in-human phase 1 CRISPR gene editing cancer trials: Are we ready? Current Gene Therapy, 17(4): 309-319. https://doi.org/10.2174/1566523217666171121165935   [Google Scholar] PMid:29173170 PMCid:PMC5769084
  6. Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, and Lawrence-Dill CJ (2015). A quick guide to CRISPR sgRNA design tools. GM Crops and Food, 6(4): 266-276. https://doi.org/10.1080/21645698.2015.1137690   [Google Scholar] PMid:26745836 PMCid:PMC5033207
  7. Burgess DJ (2013). A CRISPR genome-editing tool. Nature Reviews Genetics, 14: 81. https://doi.org/10.1038/nrg3409   [Google Scholar] PMid:23322222
  8. Carroll D (2012). A CRISPR approach to gene targeting. Molecular Therapy, 20(9): 1658-1660. https://doi.org/10.1038/mt.2012.171   [Google Scholar] PMid:22945229 PMCid:PMC3437577
  9. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, and Inga A (2018). A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology, 36(3): 265-271. https://doi.org/10.1038/nbt.4066   [Google Scholar] PMid:29431739 PMCid:PMC6066108
  10. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, and Xi JJ (2013). Genome editing with RNA-guided Cas9 nuclease in zebra fish embryos. Cell Research, 23(4): 465-472. https://doi.org/10.1038/cr.2013.45   [Google Scholar] PMid:23528705 PMCid:PMC3616424
  11. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, and Doudna JA (2017). Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 550(7676): 407-410. https://doi.org/10.1038/nature24268   [Google Scholar] PMid:28931002 PMCid:PMC5918688
  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, and Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819-823. https://doi.org/10.1126/science.1231143   [Google Scholar] PMid:23287718 PMCid:PMC3795411
  13. De Souza N (2013). Genetics: RNA-guided gene editing. Nature Methods, 10: 189. https://doi.org/10.1038/nmeth.2389   [Google Scholar] PMid:23565557
  14. Deng WL, Gao ML, Lei XL, Lv JN, Zhao H, He KW, and Pan D (2018). Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Reports, 10(4): 1267-1281. https://doi.org/10.1016/j.stemcr.2018.02.003   [Google Scholar] PMid:29526738 PMCid:PMC5998840
  15. El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TA, Warner SC, and Janssen PM (2017). In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circulation Research, 121(8): 923-929. https://doi.org/10.1161/CIRCRESAHA.117.310996   [Google Scholar] PMid:28790199 PMCid:PMC5623072
  16. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, and Calarco JA (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 10(8): 741-743. https://doi.org/10.1038/nmeth.2532   [Google Scholar] PMid:23817069 PMCid:PMC3822328
  17. Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, and Zhang Y (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18: 13. https://doi.org/10.1186/s13059-016-1144-4   [Google Scholar] PMid:28143571 PMCid:PMC5286826
  18. Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, and Mamonkin M (2017). CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood, the Journal of the American Society of Hematology, 130(3): 285-296. https://doi.org/10.1182/blood-2017-01-761320   [Google Scholar] PMid:28539325 PMCid:PMC5520470
  19. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, and O’Connor-Giles KM (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029-1035. https://doi.org/10.1534/genetics.113.152710   [Google Scholar] PMid:23709638 PMCid:PMC3730909
  20. Hai T, Teng F, Guo R, Li W, and Zhou Q (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 24(3): 372-375. https://doi.org/10.1038/cr.2014.11   [Google Scholar] PMid:24481528 PMCid:PMC3945887
  21. Han HA, Pang JKS, and Soh BS (2020). Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine. https://doi.org/10.1007/s00109-020-01893-z   [Google Scholar] PMid:32198625 PMCid:PMC7220873
  22. Horvath P and Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167-170. https://doi.org/10.1126/science.1179555   [Google Scholar] PMid:20056882
  23. Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, and Wei F (2019). CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunology, Immunotherapy, 68(3): 365-377. https://doi.org/10.1007/s00262-018-2281-2   [Google Scholar] PMid:30523370
  24. Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, and He D (2015). TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. The Journal of Clinical Investigation, 125(1): 425-436. https://doi.org/10.1172/JCI78206   [Google Scholar] PMid:25500889 PMCid:PMC4382249
  25. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, and Li K (2014). Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Research International, 2014: Article ID: 612823. https://doi.org/10.1155/2014/612823   [Google Scholar] PMid:25136604 PMCid:PMC4127252
  26. Hutter G, Nowak D, Mossner M, Ganepola S, Müßig A, Allers K, and Blau IW (2009). Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. New England Journal of Medicine, 360(7): 692-698. https://doi.org/10.1056/NEJMoa0802905   [Google Scholar] PMid:19213682
  27. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, and Joung JK (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3): 227-229. https://doi.org/10.1038/nbt.2501   [Google Scholar] PMid:23360964 PMCid:PMC3686313
  28. Ishino Y, Shinagawa H, Makino K, Amemura M, and Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12): 5429-5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987   [Google Scholar] PMid:3316184 PMCid:PMC213968
  29. Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, and Wang N (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7): 817-823. https://doi.org/10.1111/pbi.12677   [Google Scholar] PMid:27936512 PMCid:PMC5466436
  30. Jiang W, Zhou H, Bi H, Fromm M, Yang B, and Weeks DP (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20): e188-e188. https://doi.org/10.1093/nar/gkt780   [Google Scholar] PMid:23999092 PMCid:PMC3814374
  31. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, and Charpentier E (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816-821. https://doi.org/10.1126/science.1225829   [Google Scholar] PMid:22745249 PMCid:PMC6286148
  32. Kishi-Kaboshi M, Aida R, and Sasaki K (2018). Genome engineering in ornamental plants: Current status and future prospects. Plant Physiology and Biochemistry, 131: 47-52. https://doi.org/10.1016/j.plaphy.2018.03.015   [Google Scholar] PMid:29709514
  33. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, and Joung JK (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587): 490-495. https://doi.org/10.1038/nature16526   [Google Scholar] PMid:26735016 PMCid:PMC4851738
  34. Kulkarni JA, Cullis PR, and Van Der Meel R (2018). Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Therapeutics, 28(3): 146-157. https://doi.org/10.1089/nat.2018.0721   [Google Scholar] PMid:29683383
  35. Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, and Liu MJ (2017). CRISPR/Cas9‐mediated loss of FGF5 function increases wool staple length in sheep. The Federation of European Biochemical Societies Journal, 284(17): 2764-2773. https://doi.org/10.1111/febs.14144   [Google Scholar] PMid:28631368
  36. Lim Y, Bak SY, Sung K, Jeong E, Lee SH, Kim JS, and Kim SK (2016). Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nature Communications, 7: 13350. https://doi.org/10.1038/ncomms13350   [Google Scholar] PMid:27804953 PMCid:PMC5097132
  37. Lo TW, Pickle CS, Lin S, Ralston EJ, Gurling M, Schartner CM, and Meyer BJ (2013). Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics, 195(2): 331-348. https://doi.org/10.1534/genetics.113.155382   [Google Scholar] PMid:23934893 PMCid:PMC3781963
  38. Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, and Li H (2018). Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Research and Therapy, 9: 92. https://doi.org/10.1186/s13287-018-0839-8   [Google Scholar] PMid:29625575 PMCid:PMC5889534
  39. Ma T, Tao J, Yang M, He C, Tian X, Zhang X, and Wang J (2017). An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin‐enriched milk in sheep. Journal of Pineal Research, 63(1): e12406. https://doi.org/10.1111/jpi.12406   [Google Scholar] PMid:28273380
  40. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet‐Loedin I, Čermák T, and Chadha‐Mohanty P (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnology Journal, 16(11): 1918-1927. https://doi.org/10.1111/pbi.12927   [Google Scholar] PMid:29604159 PMCid:PMC6181218
  41. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, and Dass A (2019). Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature Medicine, 25(2): 229-233. https://doi.org/10.1038/s41591-018-0327-9   [Google Scholar] PMid:30664785
  42. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, and Church GM (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823-826. https://doi.org/10.1126/science.1232033   [Google Scholar] PMid:23287722 PMCid:PMC3712628
  43. Mettananda S, Fisher CA, Hay D, Badat M, Quek L, Clark K, and Telenius J (2017). Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nature Communications, 8: 424. https://doi.org/10.1038/s41467-017-00479-7   [Google Scholar] PMid:28871148 PMCid:PMC5583283
  44. NIH (2020). Clinical trials database. National Institutes of Health, U.S. National Library of Medicine, Clinical Trials, Bethesda, USA.  
  45. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, and Xiang AP (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4): 836-843. https://doi.org/10.1016/j.cell.2014.01.027   [Google Scholar] PMid:24486104
  46. Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, and Zhou G (2018). Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reproduction, Fertility and Development, 30(2): 307-312. https://doi.org/10.1071/RD17068   [Google Scholar] PMid:28692815
  47. Oost VDJ (2013). New tool for genome surgery. Science, 339(6121): 768-770. https://doi.org/10.1126/science.1234726   [Google Scholar] PMid:23413345
  48. Ou Z, Niu X, He W, Chen Y, Song B, Xian Y, and Sun X (2016). The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Scientific Reports, 6: 32463. https://doi.org/10.1038/srep32463   [Google Scholar] PMid:27581487 PMCid:PMC5007518
  49. Park S, Gianotti-Sommer A, Molina-Estevez FJ, Vanuytsel K, Skvir N, Leung A, and Luo HY (2017). A comprehensive, ethnically diverse library of sickle cell disease-specific induced pluripotent stem cells. Stem Cell Reports, 8(4): 1076-1085. https://doi.org/10.1016/j.stemcr.2016.12.017   [Google Scholar] PMid:28111279 PMCid:PMC5390092
  50. Pei Y and Lu M (2019). Programmable RNA manipulation in living cells. Cellular and Molecular Life Sciences, 76: 4861–4867. https://doi.org/10.1007/s00018-019-03252-9   [Google Scholar] PMid:31367845
  51. Peng R, Lin G, and Li J (2016). Potential pitfalls of CRISPR/Cas9‐mediated genome editing. The Federation of European Biochemical Societies Journal, 283(7): 1218-1231. https://doi.org/10.1111/febs.13586   [Google Scholar] PMid:26535798
  52. Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, and Raya A (2017). CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell, 21(4): 431-447. https://doi.org/10.1016/j.stem.2017.09.006   [Google Scholar] PMid:28985525 PMCid:PMC6205890
  53. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, and Lim WA (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5): 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022   [Google Scholar] PMid:23452860 PMCid:PMC3664290
  54. Rees HA and Liu DR (2018). Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 19(12): 770-788. https://doi.org/10.1038/s41576-018-0059-1   [Google Scholar] PMid:30323312 PMCid:PMC6535181
  55. Ren J, Liu X, Fang C, Jiang S, June CH, and Zhao Y (2017a). Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clinical Cancer Research, 23(9): 2255-2266. https://doi.org/10.1158/1078-0432.CCR-16-1300   [Google Scholar] PMid:27815355 PMCid:PMC5413401
  56. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, and Zhao Y (2017b). A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 8(10): 17002-17011. https://doi.org/10.18632/oncotarget.15218   [Google Scholar] PMid:28199983 PMCid:PMC5370017
  57. Sanchez-Leon S, Gil‐Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, and Barro F (2018). Low‐gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(4): 902-910. https://doi.org/10.1111/pbi.12837   [Google Scholar] PMid:28921815 PMCid:PMC5867031
  58. Schindele P, Wolter F, and Puchta H (2018). Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. Federation of European Biochemical Societies Letters, 592(12): 1954-1967. https://doi.org/10.1002/1873-3468.13073   [Google Scholar] PMid:29710373
  59. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, and Huang X (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 23(5): 720-723. https://doi.org/10.1038/cr.2013.46   [Google Scholar] PMid:23545779 PMCid:PMC3641603
  60. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, and Habben JE (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2): 207-216. https://doi.org/10.1111/pbi.12603   [Google Scholar] PMid:27442592 PMCid:PMC5258859
  61. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, and Zhang F (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268): 84-88. https://doi.org/10.1126/science.aad5227   [Google Scholar] PMid:26628643 PMCid:PMC4714946
  62. Steinert J, Schiml S, Fauser F, and Puchta H (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. The Plant Journal, 84(6): 1295-1305. https://doi.org/10.1111/tpj.13078   [Google Scholar] PMid:26576927
  63. Su S, Hu B, Shao J, Shen B, Du J, Du Y, and Sha H (2016). CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Scientific Reports, 6: 20070. https://doi.org/10.1038/srep20070   [Google Scholar] PMid:26818188 PMCid:PMC4730182
  64. Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, and Gonda K (2018a). Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy. Angewandte Chemie International Edition, 57(6): 1491-1496. https://doi.org/10.1002/anie.201708689   [Google Scholar] PMid:29282854
  65. Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, and Shi L (2016). Correction: Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PloS One, 11(11): e0167322. https://doi.org/10.1371/journal.pone.0167322   [Google Scholar] PMid:27875586 PMCid:PMC5119853
  66. Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, and Chen Y (2018b). CRISPR/Cas9‐mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Animal Genetics, 49(1): 43-51. https://doi.org/10.1111/age.12626   [Google Scholar] PMid:29446146
  67. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, and Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9): 947-951. https://doi.org/10.1038/nbt.2969   [Google Scholar] PMid:25038773
  68. Wen J, Tao W, Hao S, and Zu Y (2017). Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Journal of Hematology and Oncology, 10: 119. https://doi.org/10.1186/s13045-017-0489-9   [Google Scholar] PMid:28610635 PMCid:PMC5470227
  69. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, and Murphy CN (2014). Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 91(3): 78-90. https://doi.org/10.1095/biolreprod.114.121723   [Google Scholar] PMid:25100712 PMCid:PMC4435063
  70. Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, and Shen AH (2019). Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nature Medicine, 25(5): 776-783. https://doi.org/10.1038/s41591-019-0401-y   [Google Scholar] PMid:30911135 PMCid:PMC6512986
  71. Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, and He Y (2017). CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Molecular Therapy, 25(8): 1782-1789. https://doi.org/10.1016/j.ymthe.2017.04.027   [Google Scholar] PMid:28527722 PMCid:PMC5542791
  72. Yi L and Li J (2016). CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1866(2): 197-207. https://doi.org/10.1016/j.bbcan.2016.09.002   [Google Scholar] PMid:27641687
  73. Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, and Wang F (2017). Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PloS One, 12(10): e0186056. https://doi.org/10.1371/journal.pone.0186056   [Google Scholar] PMid:29016691 PMCid:PMC5634636
  74. Zou Y, Li Z, Zou Y, Hao H, Li N, and Li Q (2018). An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochemical and Biophysical Research Communications, 498(4): 940-945. https://doi.org/10.1016/j.bbrc.2018.03.085   [Google Scholar] PMid:29545179