International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 9 (September 2019), Pages: 25-30

----------------------------------------------

 Original Research Paper

 Title: Computing topological descriptors for the molecular structure of anticancer drug

 Author(s): Hifza Iqbal 1, *, Muhammad Ozair Ahmad 1, Kashif Ali 2, Syed Tahir Raza Rizvi 2

 Affiliation(s):

 1Department of Mathematics and Statistics, The University of Lahore, Raiwind Road Campus, Lahore, Pakistan
 2Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-7587-7235

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.09.004

 Abstract:

The aim of this paper is to investigate various degree based, neighborhood based and eccentricity based topological indices by considering edge partitioning method, for the molecular structure of anticancer drug Pectin, without going to the wet lab. We have computed general Randic index, general sum connectivity index, general harmonic index, Zareb indices, atom bond connectivity, geometric arithmetic index, the 4th version of atom bond connectivity index, the 5th version of geometric arithmetic index, Sanskruti index, the 5th version of atom bond connectivity index and 4th version of the geometric arithmetic index, for the molecular graph. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Topological index, Anticancer, Drug, Pectin

 Article History: Received 14 March 2019, Received in revised form 26 June 2019, Accepted 28 June 2019

 Acknowledgement:

No Acknowledgement.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Iqbal H, Ahmad MO, and Ali K et al. (2019). Computing topological descriptors for the molecular structure of anticancer drug. International Journal of Advanced and Applied Sciences, 6(9): 25-30

 Permanent Link to this page

 Figures

 No Figure

 Tables

 No Table

----------------------------------------------

 References (32) 

  1. Akhter S and Imran M (2016). The sharp bounds on general sum-connectivity index of four operations on graphs. Journal of Inequalities and Applications, 2016: 241. https://doi.org/10.1186/s13660-016-1186-x   [Google Scholar]
  2. Akhter S, Imran M, and Raza Z (2016). On the general sum-connectivity index and general Randić index of cacti. Journal of Inequalities and Applications, 2016: 300. https://doi.org/10.1186/s13660-016-1250-6   [Google Scholar]
  3. Akhter S, Imran M, and Raza Z (2017). Bounds for the general sum-connectivity index of composite graphs. Journal of Inequalities and Applications, 2017: 76. https://doi.org/10.1186/s13660-017-1350-y   [Google Scholar] PMid:28469353 PMCid:PMC5392202
  4. Bača M, Horváthová J, Mokrišová M, and Suhányiová A (2015). On topological indices of fullerenes. Applied Mathematics and Computation, 251: 154-161. https://doi.org/10.1016/j.amc.2014.11.069   [Google Scholar]
  5. Baig AQ, Imran M, Ali H, and Rehman SU (2015b). Computing topological polynomials of certain nanostructures. Journal of Optoelectronics and Advanced Materials, 17(5-6): 877-883.   [Google Scholar]
  6. Baig AQ, Imran M, and Ali H (2015a). Computing omega, sadhana and pi polynomials of benzoid carbon nanotubes. Optoelectronics and Advanced Materials-Rapid Communications, 9(1-2): 248-255.   [Google Scholar]
  7. Braidwood L, Breuer C, and Sugimoto K (2014). My body is a cage: Mechanisms and modulation of plant cell growth. New Phytologist, 201(2): 388-402. https://doi.org/10.1111/nph.12473   [Google Scholar] PMid:24033322
  8. Estrada E, Torres L, Rodriguez L, and Gutman I (1998). An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian Journal of Chemistry, 37A(10): 849-855.   [Google Scholar]
  9. Farahani MR (2013). Eccentricity version of atom-bond connectivity index of Benzenoid family ABC5 (Hk). World Applied Sciences Journal, 21(9): 1260-1265.   [Google Scholar]
  10. Foruzanfar Z, Farahani MR, Baig AQ, Sajjad W, Zahra B, and Campus MB (2017). The first eccentric zagreb index of the nt h growth of nanostar dendrimer D3 [N]. International Journal of Pure and Applied Mathematics, 117(1): 99-106. https://doi.org/10.12732/ijpam.v117i1.10   [Google Scholar]
  11. Furtula B, Graovac A, and Vukičević D (2010). Augmented zagreb index. Journal of Mathematical Chemistry, 48(2): 370-380. https://doi.org/10.1007/s10910-010-9677-3   [Google Scholar]
  12. Gao W, Wang W, and Farahani MR (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016: Article ID 3216327. https://doi.org/10.1155/2016/3216327   [Google Scholar]
  13. Gao Y, Farahani MR, Sardar MS, and Zafar S (2017). On the sanskruti index of circumcoronene series of Benzenoid. Applied Mathematics, 8(4): 520-524. https://doi.org/10.4236/am.2017.84041   [Google Scholar]
  14. Gao Y, Imran M, Farahani MR, and Siddiqui HMA (2018). Some connectivity indices and zagreb index of honeycomb graphs. International Journal of Pharmaceutical Sciences and Research, 9(5): 2080-2087.   [Google Scholar]
  15. Ghorbani M and Hosseinzadeh MA (2010). Computing ABC4 index of nanostar dendrimers. Optoelectronics and Advanced Materials- Rapid Communicztions, 4(9): 1419-1422.   [Google Scholar]
  16. Ghorbani M and Khaki A (2010). A note on the fourth version of geometric-arithmetic index. Journal of Optoelectronics and Advanced Materials-Rapid Communicztions, 4(12): 2212-2215.   [Google Scholar]
  17. Glinsky VV and Raz A (2009). Modified citrus pectin anti-metastatic properties: One bullet, multiple targets. Carbohydrate Research, 344(14): 1788-1791. https://doi.org/10.1016/j.carres.2008.08.038   [Google Scholar] Mid:19061992 PMCid:PMC2782490
  18. Graovac A, Ghorbani M, and Hosseinzadeh MA (2011). Computing fifth geometric arithmetic index for nanostar dendrimers. Journal of Mathematical Nanoscience, 1(1): 33-42.   [Google Scholar]
  19. Guess BW, Scholz MC, Strum SB, Lam RY, Johnson HJ, and Jennrich RI (2003). Modified citrus pectin (MCP) increases the prostate-specific antigen doubling time in men with prostate cancer: A phase II pilot study. Prostate Cancer and Prostatic Diseases, 6(4): 301-304. https://doi.org/10.1038/sj.pcan.4500679   [Google Scholar] PMid:14663471
  20. Hosamani SM (2017). Computing sanskruti index of certain nanostructures. Journal of Applied Mathematics and Computing, 54(1-2): 425-433. https://doi.org/10.1007/s12190-016-1016-9   [Google Scholar]
  21. Ji F, Li J, Qin Z, Yang B, Zhang E, Dong D, and Yao F (2017). Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydrate Polymers, 177: 86-96. https://doi.org/10.1016/j.carbpol.2017.08.107   [Google Scholar] PMid:28962799
  22. Nadeem MF, Zafar S, and Zahid Z (2015). On certain topological indices of the line graph of subdivision graphs. Applied Mathematics and Computation, 271: 790-794. https://doi.org/10.1016/j.amc.2015.09.061   [Google Scholar]
  23. Nadeem MF, Zafar S, and Zahid Z (2016). On topological properties of the line graphs of subdivision graphs of certain nanostructures. Applied Mathematics and Computation, 273: 125-130. https://doi.org/10.1016/j.amc.2015.10.010   [Google Scholar]
  24. Randic M (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23): 6609-6615. https://doi.org/10.1021/ja00856a001   [Google Scholar]
  25. Ranjini PS, Lokesha V, and Usha A (2013). Relation between phenylene and hexagonal squeeze using harmonic index. International Journal of Graph Theory, 1(4): 116-121.   [Google Scholar]
  26. Thakur BR, Singh RK, Handa AK, and Rao MA (1997). Chemistry and uses of pectin: A review. Critical Reviews in Food Science and Nutrition, 37(1): 47-73. https://doi.org/10.1080/10408399709527767   [Google Scholar] PMid:9067088
  27. Wiener H (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1): 17-20. https://doi.org/10.1021/ja01193a005   [Google Scholar] PMid:20291038
  28. Wong TW, Colombo G, and Sonvico F (2011). Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech, 12(1): 201-214. https://doi.org/10.1208/s12249-010-9564-z   [Google Scholar] PMid:21194013 PMCid:PMC3066368
  29. Yan L, Gao W, and Li J (2015). General harmonic index and general sum connectivity index of polyomino chains and nanotubes. Journal of Computational and Theoretical Nanoscience, 12(10): 3940-3944. https://doi.org/10.1166/jctn.2015.4308   [Google Scholar]
  30. Zhang W, Xu P, and Zhang H (2015). Pectin in cancer therapy: A review. Trends in Food Science and Technology, 44(2): 258-271. https://doi.org/10.1016/j.tifs.2015.04.001   [Google Scholar]
  31. Zhang X, Baig AQ, Azhar MR, Farahani MR, and Imran M (2017). The average eccentricity and eccentricity based geometric-arithmetic index of tetra sheets. International Journal of Pure and Applied Mathematics, 117(3): 467-479. https://doi.org/ 10.12732/ijpam.v117i3.11   [Google Scholar]
  32. Zhou B and Trinajstić N (2010). On general sum-connectivity index. Journal of Mathematical Chemistry, 47(1): 210-218. https://doi.org/10.1007/s10910-009-9542-4   [Google Scholar]