International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 5 (May 2019), Pages: 38-43

----------------------------------------------

 Original Research Paper

 Title: Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes

 Author(s): Mohd Faiz Hassan *, Nur Syazwan Nor Azimi

 Affiliation(s):

 Advanced Nano Materials (ANoMa) Research Group, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-8053-1973

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.05.007

 Abstract:

The thin films of solid polymer electrolytes were based on corn starch doped with magnesium sulphate (MgSO4) with different ratios of polymer and salt added. They were prepared using a single-solvent technique. The glycerin was added to the mixture of the solution to offer more elasticity to the polymer film and by increasing the flexibility of the thin-film membrane. The conductivity and electric studies were carried out on these thin films to understand the ion transport properties of the polymer electrolytes. The highest conductivity obtained was 8.52 × 10−5 S cm−1, which for the 35 wt. % MgSO4 salt-doped polymer electrolyte system at room temperature. From the evaluation on the transport properties, the conductivity of the system was generally influenced by n, μ and D of charge carriers. MgSO4 helped to increase the ionic conductivity and further increase the salt content, while the diffusion coefficient and mobility of charge carriers were increased. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Impedance spectroscopy, Ionic conductivity, Diffusion coefficient, Mobility, Charge carrier density

 Article History: Received 21 November 2018, Received in revised form 8 March 2019, Accepted 11 March 2019

 Acknowledgement:

The authors would like to thank the School of Fundamental Science, Universiti Malaysia Terengganu for financial supports on this study. 

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

 Hassan MF and Azimi NSN (2019). Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. International Journal of Advanced and Applied Sciences, 6(5): 38-43

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 Table 1 Table 2 Table 3

----------------------------------------------

 References (40)

  1. Arof AK, Amirudin S, Yusof SZ, and Noor IM (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 16(5): 1856-1867. https://doi.org/10.1039/C3CP53830C   [Google Scholar] PMid:24326909
  2. Bandara TMWJ and Mellander BE (2011). Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. In: Kokorin A (Ed.), Ionic liquids: Theory, properties, new approaches: 383-406. Intech Open, London, UK. https://doi.org/10.5772/15183   [Google Scholar]
  3. Bruce PG and Vincent CA (1993). Polymer electrolytes. Journal of the Chemical Society, Faraday Transactions, 89(17): 3187-3203. https://doi.org/10.1039/ft9938903187   [Google Scholar]
  4. Byrne A, Barry S, Holmes N, and Norton B (2017). Optimising the performance of cement-based batteries. Advances in Materials Science and Engineering, 2017: Article ID 4724302. https://doi.org/10.1155/2017/4724302   [Google Scholar]
  5. Chai MN and Isa MIN (2016). Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Scientific Reports, 6: 1-7. https://doi.org/10.1038/srep27328   [Google Scholar] PMid:27265642 PMCid:PMC4893606
  6. Dai S, Chu Y, Liu D, Cao F, Wu X, Zhou J, Zhou B, Chen Y, and Huang J (2018). Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nature Communications, 9(1): 1-10. https://doi.org/10.1038/s41467-018-05155-y   [Google Scholar] PMid:30013115 PMCid:PMC6048164
  7. Gohel K and Kanchan DK (2018). Ionic conductivity and relaxation studies in PVDF-HFP: PMMA-based gel polymer blend electrolyte with LiClO4 salt. Journal of Advanced Dielectrics, 8(1): 1850005. https://doi.org/10.1142/S2010135X18500054   [Google Scholar]
  8. Hassan MF and Arof AK (2005). Ionic conductivity in PEO‐KOH polymer electrolytes and electrochemical cell performance. Physica Status Solidi (A), 202(13): 2494-2500. https://doi.org/10.1002/pssa.200521188   [Google Scholar]
  9. Hassan MF and Noruddin N (2018). The effect of lithium perchlorate on poly (sodium 4-styrenesulfonate): Studies based on morphology, structural and electrical conductivity. Materials Physics and Mechanics, 36(1): 8-17.   [Google Scholar]
  10. Hassan MF and Ting HK (2018). Physical and electrical analyses of solid polymer electrolytes. ARPN Journal of Engineering and Applied Sciences, 13(20): 8189-8198.   [Google Scholar]
  11. Hassan MF, Azimi NSN, Kamarudin KH, and Sheng CK (2018). Solid polymer electrolytes based on starch-magnesium sulphate: Study on morphology and electrical conductivity. ASM Science Journal, 11(1): 17-28.   [Google Scholar]
  12. Hongois S, Kuznik F, Stevens Ph, and Roux JJ (2011). Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage. Solar Energy Materials and Solar Cells, 95(7): 1831-1837. https://doi.org/10.1016/j.solmat.2011.01.050   [Google Scholar]
  13. Khanmirzaei MH and Ramesh S (2013). Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. International Journal of Electrochemical Science, 8(7): 9977-9991.   [Google Scholar]
  14. Koduru HK, Kondamareddy KK, Iliev MT, Marinov YG, Hadjichristov GB, Karashanova D, and Scaramuzza N (2017). Synergetic effect of TiO2 nano filler additives on conductivity and dielectric properties of PEO/PVP nanocomposite electrolytes for electrochemical cell applications. Journal of Physics: Conference Series, 780(1): 1-8. https://doi.org/10.1088/1742-6596/780/1/012006   [Google Scholar]
  15. Kulshrestha N, Chatterjee B, and Gupta PN (2014). Structural, thermal, electrical, and dielectric properties of synthesized nanocomposite solid polymer electrolytes. High Performance Polymers, 26(6): 677-688. https://doi.org/10.1177/0954008314541820   [Google Scholar]
  16. Lin JH, Liu Y, and Zhang QM (2012). Influence of the electrolyte film thickness on charge dynamics of ionic liquids in ionic electroactive devices. Macromolecules, 45(4): 2050-2056. https://doi.org/10.1021/ma202165n   [Google Scholar] PMid:22423148 PMCid:PMC3298447
  17. Lota K, Sierczynska A, Acznik I, and Lota G (2013). Effect of aqueous electrolytes on electrochemical capacitor capacitance. Chemik, 67(11): 1138-1145.   [Google Scholar]
  18. Mahon D, Claudio G, and Eames PC (2017). An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage. Energy Conversion and Management, 150: 870-877. https://doi.org/10.1016/j.enconman.2017.03.080   [Google Scholar]
  19. Majid SR, Idris NH, Hassan MF, Winie T, Khiar ASA, and Arof AK (2005). Transport studies on filler-doped chitosan based polymer electrolyte. Ionics, 11(5-6): 451-455. https://doi.org/10.1007/BF02430265   [Google Scholar]
  20. Masse RC, Uchaker E, and Cao G (2015). Beyond Li-ion: Electrode materials for sodium-and magnesium-ion batteries. Science China Materials, 58(9): 715-766. https://doi.org/10.1007/s40843-015-0084-8   [Google Scholar]
  21. Maurya KK, Hashimi SA, and Chandra S (1992). Evidence of ion association in polymer electrolyte by direct mobility measurements. In: Hashmi SA, Chandra A, Chandra S, and Chowdari BVR (Eds.), Solid state Ionics: Materials and applications: 567-571. World Scientific, Singapore, Singapore.   [Google Scholar]
  22. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, Aristatil G, Mani N, and Premalatha M (2017). Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydrate Polymers, 157: 38-47. https://doi.org/10.1016/j.carbpol.2016.09.026   [Google Scholar] PMid:27987941
  23. Navaratnam S, Sanusi A, Ahmad AH, Ramesh S, Ramesh K, and Othman N (2015). Conductivity studies of biopolymer electrolyte based on potato starch/chitosan blend doped with LiCF3SO3. Jurnal Teknologi, 75(7): 1-5. https://doi.org/10.11113/jt.v75.5163   [Google Scholar]
  24. Pang SC, Tay CL, and Chin SF (2014). Starch-based gel electrolyte thin films derived from native sago (Metroxylon sagu) starch. Ionics, 20(10): 1455-1462. https://doi.org/10.1007/s11581-014-1092-5   [Google Scholar]
  25. Prajapati GK and Gupta PN (2009). Study of ionic conductivity, dielectric characteristics and capacitance measurement of γ-irradiated conducting polymeric electrolytes. Phase Transitions, 82(1): 1–9. https://doi.org/10.1080/01411590802236225   [Google Scholar]
  26. Rajendran S, Mahalingam T, and Kannan R (2000). Experimental investigations on PAN–PEO hybrid polymer electrolytes. Solid State Ionics, 130(1-2): 143-148. https://doi.org/10.1016/S0167-2738(00)00283-6   [Google Scholar]
  27. Ramlli MA and Isa MIN (2016). Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on Carboxymethyl cellulose doped with ammonium fluoride. The Journal of Physical Chemistry B, 120(44): 11567-11573. https://doi.org/10.1021/acs.jpcb.6b06068   [Google Scholar] PMid:27723333
  28. Reddy CVS, Wu GP, Zhao CX, Zhu QY, Chen W, and Kalluru RR (2007). Characterization of SBA-15 doped (PEO+ LiClO4) polymer electrolytes for electrochemical applications. Journal of Non-Crystalline Solids, 353(4): 440-445. https://doi.org/10.1016/j.jnoncrysol.2006.12.010   [Google Scholar]
  29. Ribeiro DV, Souza CAC, and Abrantes JCC (2015). Use of electrochemical impedance spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Ibracon Structures and Materials Journal, 8(4): 529–546. https://doi.org/10.1590/S1983-41952015000400007   [Google Scholar]
  30. Shahrudin S and Ahmad AH (2016). Conductivity studies of graphene oxide on biopolymer electrolyte. International Journal of Advanced and Applied Sciences, 3(10): 14-19. https://doi.org/10.21833/ijaas.2016.10.003   [Google Scholar]
  31. Srivastava N, Chandra A, and Chandra S (1995). Dense branched growth of (SCN) x and ion transport in the poly (ethyleneoxide) NH 4 SCN polymer electrolyte. Physical Review B, 52(1): 225-230. https://doi.org/10.1103/PhysRevB.52.225   [Google Scholar]
  32. Van Essen VM, Zondag HA, Gores JC, Bleijendaal LPJ, Bakker M, Schuitema R, and Rindt CM (2009). Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. Journal of Solar Energy Engineering, 131(4): 1-7. https://doi.org/10.1115/1.4000275   [Google Scholar]
  33. Verma ML and Sahu HD (2017). Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics, 23(9): 2339-2350. https://doi.org/10.1007/s11581-017-2063-4   [Google Scholar]
  34. Vincent CA (1987). Polymer electrolytes. Progress in Solid State Chemistry, 17(3): 145-261. https://doi.org/10.1016/0079-6786(87)90003-3   [Google Scholar]
  35. Wang F, Fan X, Gao T, Sun W, Ma Z, Yang C, and Wang C (2017). High-Voltage aqueous magnesium ion batteries. ACS Central Science, 3(10): 1121-1128. https://doi.org/10.1021/acscentsci.7b00361   [Google Scholar] PMid:29104929 PMCid:PMC5658756
  36. Xu K (2014). Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 114(23): 11503-11618. https://doi.org/10.1021/cr500003w   [Google Scholar] PMid:25351820
  37. Yusof YM, Shukur MF, Illias HA, and Kadir MFZ (2014). Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Physica Scripta, 89(3): 035701. https://doi.org/10.1088/0031-8949/89/03/035701   [Google Scholar]
  38. Zainuddin NK, Rasali NMJ, and Samsudin AS (2018). Study on the effect of PEG in ionic transport for CMC-NH4Br-based solid polymer electrolyte. Ionics, 24(10): 3039–3052. https://doi.org/10.1007/s11581-018-2505-7   [Google Scholar]
  39. Zamri SFM, Latif FA, Ibrahim R, Kamaluddin N, and Hadip F (2014). Ionic conductivity and dielectric properties of LiBF4 doped PMMA/ENR 50 filled acid modified SiO2 electrolytes. Procedia Technology, 15: 849-855. https://doi.org/10.1016/j.protcy.2014.09.059   [Google Scholar]
  40. Zhu Z, Zhao D, Chueh CC, Shi X, Li Z, and Jen AKY (2018). Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule, 2(1): 168-183. https://doi.org/10.1016/j.joule.2017.11.006   [Google Scholar]