International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 6, Issue 4 (April 2019), Pages: 33-44

----------------------------------------------

 Original Research Paper

 Title: Computational approaches to identify novel drug-like immunomodulators against multiple sclerosis

 Author(s): Asif Hassan Syed *

 Affiliation(s):

 Department of Computer Science, Faculty of Computing and Information Technology at Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7288-3098

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2019.04.004

 Abstract:

Sphingosine1-Phosphate Receptor1 (S1PR1) a G protein-coupled receptor is critically involved in the trafficking of peripheral T-Lymphocyte into the Central Nervous System (CNS) leading to Remitting type of Multiple Sclerosis (RSMS). In the present scenario, the long-term benefits of the current immunomodulator against RSMS that bind specifically to S1PR1preventing the upward movement of lymphocytes toward CNS are uncertain due to the undesirable side effects. Therefore, in this paper, the author aims to screen derivatives of known immunomodulators used in Multiple Sclerosis (MS) treatment that binds specifically with S1PR1 receptor with better affinity and pharmacological properties than their parental compound. In this context, two promising analogs were screened namely CID_11623444 (L7A) and CID_445354 (RTL) of mitoxantrone and fingolimod, respectively that showed better pharmacokinetic properties, immunomodulatory activity, BBB permeability and affinity for S1PR1 receptors than their corresponding parental immunomodulator compound. Moreover, both the analogs were found to be specific inhibitors of S1PR1receptor by Baell and Holloway method. Therefore, based on the results it can be proposed that chemical analogs CID_11623444 and CID_445354 are useful lead molecules which may slow the progression of Multiple Sclerosis (MS) with greater efficacy and minimum side effects. 

 © 2019 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Relapsing-remitting multiple sclerosis, S1PR1 receptor, Virtual screening, Pharmacological properties, Novel immunomodulator

 Article History: Received 7 November 2018, Received in revised form 5 February 2019, Accepted 9 February 2019

 Acknowledgement:

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under the grant no. (G-87-830-37). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

 Compliance with ethical standards

 Conflict of interest:  The authors declare that they have no conflict of interest.

 Citation:

  Syed AH (2019). Computational approaches to identify novel drug-like immunomodulators against multiple sclerosis. International Journal of Advanced and Applied Sciences, 6(4): 33-44

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 

----------------------------------------------

 References (45) 

  1. Alcorn N, Saunders S, and Madhok R (2009). Benefit-risk assessment of leflunomide. Drug Safety, 32(12): 1123-1134. https://doi.org/10.2165/11316650-000000000-00000   [Google Scholar] PMid:19916579
  2. Allende ML, Dreier JL, Mandala S, and Proia RL (2004). Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. Journal of Biological Chemistry, 279(15): 15396-15401. https://doi.org/10.1074/jbc.M314291200   [Google Scholar] PMid:14732704
  3. Amin ML (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 7: 27–34. https://doi.org/10.4137/DTI.S12519   [Google Scholar] PMid:24023511 PMCid:PMC3762612
  4. Antel J (2014). Mechanisms of action of fingolimod in multiple sclerosis. Clinical and Experimental Neuroimmunology, 5(1): 49-54. https://doi.org/10.1111/cen3.12079   [Google Scholar]
  5. Bolton EE, Chen J, Kim S, Han L, He S, Shi W, and Yu B (2011). PubChem3D: A new resource for scientists. Journal of Cheminformatics, 3(1): 32-46. https://doi.org/10.1186/1758-2946-3-32   [Google Scholar] PMid:21933373 PMCid:PMC3269824
  6. Bolton EE, Kim S, and Bryant SH (2011a). PubChem3D: Conformer generation. Journal of Cheminformatics, 3(1): 4-19. https://doi.org/10.1186/1758-2946-3-4   [Google Scholar] PMid:21272340 PMCid:PMC3042967
  7. Bolton EE, Kim S, and Bryant SH (2011b). PubChem3D: diversity of shape. Journal of Cheminformatics, 3(1): 9-22. https://doi.org/10.1186/1758-2946-3-9   [Google Scholar] PMid:21418625 PMCid:PMC3072936
  8. Bolton EE, Kim S, and Bryant SH (2011c). PubChem3D: Similar conformers. Journal of Cheminformatics, 3(1): 13-34. https://doi.org/10.1186/1758-2946-3-13   [Google Scholar] PMid:21554721 PMCid:PMC3120778
  9. Borodina YV, Filimonov DA, and Poroikov VV (1996). Computer-aided prediction of prodrug activity using the PASS system. Pharmaceutical Chemistry Journal, 30(12): 760-763. https://doi.org/10.1007/BF02218831   [Google Scholar]
  10. Cortes C and Vapnik V (1995). Support-vector networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018   [Google Scholar]
  11. Dahlin JL, Nissink JWM, Strasser JM, Francis S, Higgins L, Zhou H, and Walters MA (2015). PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. Journal of Medicinal Chemistry, 58(5): 2091-2113. https://doi.org/10.1021/jm5019093   [Google Scholar] PMid:25634295 PMCid:PMC4360378
  12. Daina A and Zoete V (2016). A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11): 1117-1121. https://doi.org/10.1002/cmdc.201600182   [Google Scholar] PMid:27218427 PMCid:PMC5089604
  13. Daina A, Michielin O, and Zoete V (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7: 42717. https://doi.org/10.1038/srep42717   [Google Scholar] PMid:28256516 PMCid:PMC5335600
  14. Fox EJ (2004). Mechanism of action of mitoxantrone. Neurology, 63(12 suppl 6): S15-S18. https://doi.org/10.1212/WNL.63.12_suppl_6.S15   [Google Scholar] PMid:15623664
  15. Goodin DS (2014). The epidemiology of multiple sclerosis: Insights to disease pathogenesis. Handbook of Clinical Neurology, 122: 231-266. https://doi.org/10.1016/B978-0-444-52001-2.00010-8   [Google Scholar] PMid:24507521
  16. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, and Shine J (1986). Sequence and expression of human estrogen receptor complementary DNA. Science, 231(4742): 1150-1154. https://doi.org/10.1126/science.3753802   [Google Scholar] PMid:3753802
  17. Handel AE, Giovannoni G, Ebers GC, and Ramagopalan SV (2010). Environmental factors and their timing in adult-onset multiple sclerosis. Nature Reviews Neurology, 6(3): 156-166. https://doi.org/10.1038/nrneurol.2010.1   [Google Scholar] PMid:20157307
  18. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, and Sanna MG (2012). Crystal structure of a lipid G protein–coupled receptor. Science, 335(6070): 851-855. https://doi.org/10.1126/science.1215904   [Google Scholar] PMid:22344443 PMCid:PMC3338336
  19. He D, Zhang C, Zhao X, Zhang Y, Dai Q, Li Y, and Chu L (2016). Teriflunomide for multiple sclerosis. The Cochrane Library, John Wiley and Sons, Hoboken, New Jersey, USA. https://doi.org/10.1002/14651858.CD009882.pub3   [Google Scholar]
  20. Kasarełło K, Cudnoch-Jędrzejewska A, Członkowski A, and Mirowska-Guzel D (2017). Mechanism of action of three newly registered drugs for multiple sclerosis treatment. Pharmacological Reports, 69(4): 702-708. https://doi.org/10.1016/j.pharep.2017.02.017   [Google Scholar] PMid:28550802
  21. Kim S, Bolton EE, and Bryant SH (2011a). PubChem3D: Biologically relevant 3-D similarity. Journal of Cheminformatics, 3(1): 26-47. https://doi.org/10.1186/1758-2946-3-26   [Google Scholar] PMid:21781288 PMCid:PMC3223603
  22. Kim S, Bolton EE, and Bryant SH (2011b). PubChem3D: Shape compatibility filtering using molecular shape quadrupoles. Journal of Cheminformatics, 3(1): 25-38. https://doi.org/10.1186/1758-2946-3-25   [Google Scholar]PMid:21774809 PMCid:PMC3158422
  23. Kim S, Bolton EE, and Bryant SH (2012). Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis. Journal of Cheminformatics, 4(1): 28-57. https://doi.org/10.1186/1758-2946-4-28   [Google Scholar] PMid:23134593 PMCid:PMC3537644
  24. Kim S, Bolton EE, and Bryant SH (2013). PubChem3D: Conformer ensemble accuracy. Journal of Cheminformatics, 5(1): 1-17. https://doi.org/10.1186/1758-2946-5-1   [Google Scholar] PMid:23289532 PMCid:PMC3547714
  25. Lipinski CA (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4): 337-341. https://doi.org/10.1016/j.ddtec.2004.11.007   [Google Scholar] PMid:24981612
  26. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, and Harris TH (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560): 337-341. https://doi.org/10.1038/nature14432   [Google Scholar] PMid:26030524 PMCid:PMC4506234
  27. Lublin FD and Reingold SC (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology, 46(4): 907-911. https://doi.org/10.1212/WNL.46.4.907   [Google Scholar] PMid:8780061
  28. Marriott JJ, Miyasaki JM, Gronseth G, and O'connor PW (2010). Evidence report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology, 74(18): 1463-1470. https://doi.org/10.1212/WNL.0b013e3181dc1ae0   [Google Scholar] PMid:20439849 PMCid:PMC2871006
  29. Mehling M, Kappos L, and Derfuss T (2011). Fingolimod for multiple sclerosis: Mechanism of action, clinical outcomes, and future directions. Current Neurology and Neuroscience Reports, 11(5): 492-497. https://doi.org/10.1007/s11910-011-0216-9   [Google Scholar] PMid:21789537
  30. Miller AE (2017). Teriflunomide in multiple sclerosis: An update. Neurodegenerative Disease Management, 7(1): 9-29. https://doi.org/10.2217/nmt-2016-0029   [Google Scholar] PMid:27937746
  31. Miller DH and Leary SM (2007). Primary-progressive multiple sclerosis. The Lancet Neurology, 6(10): 903-912. https://doi.org/10.1016/S1474-4422(07)70243-0   [Google Scholar]
  32. Mortelmans K and Zeiger E (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1): 29-60. https://doi.org/10.1016/S0027-5107(00)00064-6   [Google Scholar]
  33. Motte J, Pitarokoili K, Bachir H, Sgodzai M, Ambrosius B, Linker R, and Gold R (2017). Immunomodulatory effects of oral dimethyl fumarate on intestinal immune regulation during experimental autoimmune neuritis in Lewis rats (P2.357). Neurology, 88(16 Supplement): P2.357.   [Google Scholar]
  34. Noseworthy JH, Lucchinetti C, Rodriguez M, and Weinshenker BG (2000). Multiple sclerosis. The New England Journal of Medicine, 343(13): 938–952. https://doi.org/10.1056/NEJM200009283431307   [Google Scholar] PMid:11006371
  35. Nylander A and Hafler DA (2012). Multiple sclerosis. The Journal of Clinical Investigation, 122(4): 1180–1188. https://doi.org/10.1172/JCI58649   [Google Scholar] PMid:22466660 PMCid:PMC3314452
  36. Orton SM, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, and Canadian Collaborative Study Group (2006). Sex ratio of multiple sclerosis in Canada: A longitudinal study. The Lancet Neurology, 5(11): 932-936. https://doi.org/10.1016/S1474-4422(06)70581-6   [Google Scholar]
  37. Ransohoff RM (2007). Natalizumab for multiple sclerosis. New England Journal of Medicine, 356(25): 2622-2629. https://doi.org/10.1056/NEJMct071462   [Google Scholar] PMid:17582072
  38. Roach ES (2004). Is multiple sclerosis an autoimmune disorder?. Archives of Neurology, 61(10): 1615-1616. https://doi.org/10.1001/archneur.61.10.1615   [Google Scholar] PMid:15477522
  39. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, and Edkins S (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 476(7359): 214-219. https://doi.org/10.1038/nature10251   [Google Scholar] PMid:21833088 PMCid:PMC3182531
  40. Scott LJ and Figgitt DP (2004). Mitoxantrone. CNS Drugs, 18(6): 379-396. https://doi.org/10.2165/00023210-200418060-00010   [Google Scholar] PMid:15089110
  41. Sigel A, Sigel H, and Sigel RK (2007). The ubiquitous roles of cytochrome P450 proteins. Vol. 10, John Wiley and Sons, Hoboken, New Jersey, USA. https://doi.org/10.1002/9780470028155   [Google Scholar]
  42. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, and Waterfield M (1985). Cloning of the human estrogen receptor cDNA. Proceedings of the National Academy of Sciences, 82(23): 7889-7893. https://doi.org/10.1073/pnas.82.23.7889   [Google Scholar] PMid:3865204
  43. Yang JM (2004). Development and evaluation of a generic evolutionary method for protein–ligand docking. Journal of Computational Chemistry, 25(6): 843-857. https://doi.org/10.1002/jcc.20013   [Google Scholar] PMid:15011256
  44. Yang JM and Chen CC (2004). GEMDOCK: A generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics, 55(2): 288-304. https://doi.org/10.1002/prot.20035   [Google Scholar]PMid:15048822
  45. Yang JM, Chen YF, Shen TW, Kristal BS, and Hsu DF (2005). Consensus scoring criteria for improving enrichment in virtual screening. Journal of Chemical Information and Modeling, 45(4): 1134-1146. https://doi.org/10.1021/ci050034w   [Google Scholar] PMid:16045308