International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 9 (September 2018), Pages: 101-109

----------------------------------------------

 Original Research Paper

 Title: Structural alteration of motor and sensory cortices in Parkinson’s disease using magnetic resonance imaging: Automatic brain segmentation

 Author(s): Sahar Shareef 1, Tahir Ali 2, Bunyamin Sahin 3, Amani Elfaki 4, Raeesa Abdel Tawab Mohammad 1, Aly Mohamed Ahmed 1, Amal AlRabiah 1, Tahani Ahmad Al-Matrafi 1, Samar Al-Saggaf 5, Abdul-Aziz Haji Ahmed 1, Muhammad Atteya 1, 6, *

 Affiliation(s):

 1Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
 2Department of Anatomy, Faculty of Medicine, National Ribat University, Khartoum, Sudan
 3Department of Anatomy, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
 4Department of Anatomy, Faculty of Medicine, National University, Khartoum, Sudan
 5Department of Anatomy, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
 6Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt

 https://doi.org/10.21833/ijaas.2018.09.015

 Full Text - PDF          XML

 Abstract:

Parkinson’s disease (PD) is a neurodegenerative disorder commonly diagnosed as motor triad of symptoms including tremor, rigidity and bradykinesia. The degeneration of the Substantia nigra in PD, leads to alterations in the function of cortical areas including primary motor cortex and other non-primary motor areas. The combination of motor and sensory symptoms marked in PD, is the cause of investigating the structural changes of motor and sensory cortices in PD. The aim of this study is to detect the structural changes of cortical thickness and the volume of grey matter and white matter in motor and sensory cortices in PD. This will help in early detection of the disease, monitor response to medication or help in prognosis and prediction of outcomes. Nineteen control volunteers and 18 Parkinson’s patients were participated in the study. The ages of participants were ranging between 45-65 years (mean 56.14 years). Structural magnetic resonance imaging was performed and the Digital Imaging and Communications in Medicine (DICOM) images were evaluated using automatic brain segmentation software (BrainSuite). The structural changes in the present study were found in the thickness of the motor cortex and in the volume of grey matter (GM) of the sensory cortex. The thickness of the right motor cortex for males was smaller in Parkinson’s patients than control. The volume of the GM of left sensory cortex for males was smaller in Parkinson’s patients than control. While no differences were found between Patients and controls in the volume of GM or white matter (WM) in the motor cortex, or in the volume of WM and the cortical thickness in the sensory cortex. Structural changes in specific areas of the brain may influence specific symptoms. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: MRI, Parkinson’s disease, Automatic brain segmentation

 Article History: Received 10 May 2018, Received in revised form 19 July 2018, Accepted 27 July 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.09.015

 Citation:

 Shareef S, Ali T, and Sahin B et al. (2018). Structural alteration of motor and sensory cortices in Parkinson’s disease using magnetic resonance imaging: Automatic brain segmentation. International Journal of Advanced and Applied Sciences, 5(9): 101-109

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I9/Shareef.html

----------------------------------------------

 References (44) 

  1. Andreadou E, Anagnostouli M, Vasdekis V, Kararizou E, Rentzos M, Kontaxis T, and Evdokimidis I (2011). The impact of comorbidity and other clinical and sociodemographic factors on health-related quality of life in Greek patients with Parkinson's disease. Aging and Mental Health, 15(7): 913-921. https://doi.org/10.1080/13607863.2011.569477   [Google Scholar]  PMid:21547746
  1. Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, and Braak E (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging, 24(2): 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9   [Google Scholar]
  1. Brenneis C, Seppi K, Schocke MF, Müller J, Luginger E, Bösch S, and Wenning GK (2003). Voxel‐based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Movement Disorders, 18(10): 1132-1138. https://doi.org/10.1002/mds.10502   [Google Scholar]  PMid:14534916
  1. Chen X, Wen W, Anstey KJ, and Sachdev PS (2006). Effects of cerebrovascular risk factors on gray matter volume in adults aged 60–64 years: A voxel-based morphometric study. Psychiatry Research: Neuroimaging, 147(2): 105-114. https://doi.org/10.1016/j.pscychresns.2006.01.009   [Google Scholar]  PMid:16962291
  1. Chen Y, Storrs J, Tan L, Mazlack LJ, Lee JH, and Lu LJ (2014). Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach. Journal of Neuroscience Methods, 221: 22-31. https://doi.org/10.1016/j.jneumeth.2013.09.001   [Google Scholar]  PMid:24041480
  1. Coelho M, Marti MJ, Tolosa E, Ferreira JJ, Valldeoriola F, Rosa M, and Sampaio C (2010). Late-stage Parkinson's disease: The barcelona and lisbon cohort. Journal of Neurology, 257(9): 1524-1532. https://doi.org/10.1007/s00415-010-5566-8   [Google Scholar]  PMid:20411272
  1. Conte A, Khan N, Defazio G, Rothwell JC, and Berardelli A (2013). Pathophysiology of somatosensory abnormalities in Parkinson disease. Nature Reviews Neurology, 9(12): 687-697. https://doi.org/10.1038/nrneurol.2013.224   [Google Scholar]  PMid:24217516
  1. Dalaker TO, Larsen JP, Bergsland N, Beyer MK, Alves G, Dwyer MG, and Zivadinov R (2009). Brain atrophy and white matter hyperintensities in early Parkinson's disease. Movement Disorders, 24(15): 2233-2241. https://doi.org/10.1002/mds.22754   [Google Scholar]  PMid:19768730
  1. Foley P and Riederer P (1999). Pathogenesis and preclinical course of Parkinson's disease. In: Przuntek H and Müller T (Eds.), Diagnosis and treatment of parkinson's disease—state of the art: 31-74. Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-6360-3_2   [Google Scholar]
  1. Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, and Hyman BT (2008). Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67(12): 1205-1212. https://doi.org/10.1097/NEN.0b013e31818fc72f   [Google Scholar]  PMid:19018241 PMCid:PMC2734185
  1. Geyer S, Matelli M, Luppino G, and Zilles K (2000). Functional neuroanatomy of the primate isocortical motor system. Anatomy and Embryology, 202(6): 443-474. https://doi.org/10.1007/s004290000127   [Google Scholar]
  1. Goldman JG, Stebbins GT, Dinh V, Bernard B, Merkitch D, deToledo-Morrell L, and Goetz CG (2014). Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson's disease with hallucinations. Brain, 137(3): 849-859. https://doi.org/10.1093/brain/awt360   [Google Scholar]  PMid:24480486 PMCid:PMC3983409
  1. Gonzalez-Redondo R, García-García D, Clavero P, Gasca-Salas C, García-Eulate R, Zubieta JL, and Rodríguez-Oroz MC (2014). Grey matter hypometabolism and atrophy in Parkinson's disease with cognitive impairment: A two-step process. Brain, 137(8): 2356-2367. https://doi.org/10.1093/brain/awu159   [Google Scholar]  PMid:24951642 PMCid:PMC4610189
  1. Jacobson S and Marcus EM (2011). Introduction to the nervous system. In: Jacobson S, Marcus EM, and Pugsley S (Eds.), Neuroanatomy for the neuroscientist: 3-15. Springer, Boston, USA. https://doi.org/10.1007/978-1-4419-9653-4_1   [Google Scholar]
  1. Jubault T, Gagnon JF, Karama S, Ptito A, Lafontaine AL, Evans AC, and Monchi O (2011). Patterns of cortical thickness and surface area in early Parkinson's disease. Neuroimage, 55(2): 462-467. https://doi.org/10.1016/j.neuroimage.2010.12.043   [Google Scholar]  PMid:21184830
  1. Kim JS, Yang JJ, Lee JM, Youn J, Kim JM, and Cho JW (2014). Topographic pattern of cortical thinning with consideration of motor laterality in Parkinson disease. Parkinsonism and Related Disorders, 20(11): 1186-1190. https://doi.org/10.1016/j.parkreldis.2014.08.021   [Google Scholar]  PMid:25231669
  1. Kishore A, Meunier S, and Popa T (2014). Cerebellar influence on motor cortex plasticity: Behavioral implications for Parkinson's disease. Frontiers in Neurology, 5: Article 68. https://doi.org/10.3389/fneur.2014.00068   [Google Scholar]
  1. Koshimori Y, Segura B, Christopher L, Lobaugh N, Duff-Canning S, Mizrahi R, and Strafella AP (2015). Imaging changes associated with cognitive abnormalities in Parkinson's disease. Brain Structure and Function, 220(4): 2249-2261. https://doi.org/10.1007/s00429-014-0785-x   [Google Scholar]  PMid:24816399 PMCid:PMC4485490
  1. Kostic VS, Agosta F, Pievani M, Stefanova E, Ječmenica-Lukić M, Scarale A, and Filippi M (2012). Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology, 78(6): 409-416. https://doi.org/10.1212/WNL.0b013e318245d23c   [Google Scholar]  PMid:22282641
  1. Lewis MM, Du G, Sen S, Kawaguchi A, Truong Y, Lee S, and Huang X (2011). Differential involvement of striato-and cerebello-thalamo-cortical pathways in tremor-and akinetic/rigid-predominant Parkinson's disease. Neuroscience, 177: 230-239. https://doi.org/10.1016/j.neuroscience.2010.12.060   [Google Scholar]  PMid:21211551 PMCid:PMC3049982
  1. Lyoo CH, Ryu YH, and Lee MS (2010). Topographical distribution of cerebral cortical thinning in patients with mild Parkinson's disease without dementia. Movement Disorders, 25(4): 496-499. https://doi.org/10.1002/mds.22975   [Google Scholar]  PMid:20108369
  1. Morgen K, Sammer G, Weber L, Aslan B, Müller C, Bachmann GF, and Reuter I (2011). Structural brain abnormalities in patients with Parkinson disease: A comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. American Journal of Neuroradiology, 32(11): 2080-2086. https://doi.org/10.3174/ajnr.A2837   [Google Scholar]  PMid:22081675
  1. Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch JP, Evans AC, and Ito K (2005). Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology, 64(2): 224-229. https://doi.org/10.1212/01.WNL.0000149510.41793.50   [Google Scholar]  PMid:15668417
  1. Nussbaum RL and Ellis CE (2003). Alzheimer's disease and Parkinson's disease. New England Journal of Medicine, 348(14): 1356-1364. https://doi.org/10.1056/NEJM2003ra020003   [Google Scholar]  PMid:12672864
  1. Pellicano C, Assogna F, Piras F, Caltagirone C, Pontieri FE, and Spalletta G (2012). Regional cortical thickness and cognitive functions in non‐demented Parkinson's disease patients: A pilot study. European Journal of Neurology, 19(1): 172-175. https://doi.org/10.1111/j.1468-1331.2011.03465.x   [Google Scholar]  PMid:21771199
  1. Pereira JB, Ibarretxe‐Bilbao N, Marti MJ, Compta Y, Junqué C, Bargallo N, and Tolosa E (2012). Assessment of cortical degeneration in patients with Parkinson's disease by voxel‐based morphometry, cortical folding, and cortical thickness. Human Brain Mapping, 33(11): 2521-2534. https://doi.org/10.1002/hbm.21378   [Google Scholar]  PMid:21898679
  1. Peters A, Morrison JH, Rosene DL, and Hyman BT (1998). Are neurons lost from the primate cerebral cortex during normal aging?. Cerebral Cortex, 8(4): 295-300. https://doi.org/10.1093/cercor/8.4.295    [Google Scholar] PMid:9651126
  1. Piguet O, Double KL, Kril JJ, Harasty J, Macdonald V, McRitchie DA, and Halliday GM (2009). White matter loss in healthy ageing: A postmortem analysis. Neurobiology of Aging, 30(8): 1288-1295. https://doi.org/10.1016/j.neurobiolaging.2007.10.015   [Google Scholar] PMid:18077060
  1. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, and Acker JD (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3): 268-282. https://doi.org/10.1093/cercor/7.3.268   [Google Scholar]  PMid:9143446
  1. Raz N, Rodrigue KM, Kennedy KM, Dahle C, Head D, and Acker JD (2003). Differential age-related changes in the regional metencephalic volumes in humans: A 5-year follow-up. Neuroscience Letters, 349(3): 163-166. https://doi.org/10.1016/S0304-3940(03)00820-6   [Google Scholar]
  1. Riddle DR, Sonntag WE, and Lichtenwalner RJ (2003). Microvascular plasticity in aging. Ageing Research Reviews, 2(2): 149-168. https://doi.org/10.1016/S1568-1637(02)00064-8   [Google Scholar]
  1. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, and Obeso JA (2009). Initial clinical manifestations of Parkinson's disease: Features and pathophysiological mechanisms. The Lancet Neurology, 8(12): 1128-1139. https://doi.org/10.1016/S1474-4422(09)70293-5   [Google Scholar]
  1. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, and Rascol O (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease: A functional MRI study. Brain, 123(2): 394-403. https://doi.org/10.1093/brain/123.2.394   [Google Scholar]  PMid:10648446
  1. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, and Fischl B (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7): 721-730. https://doi.org/10.1093/cercor/bhh032   [Google Scholar]  PMid:15054051
  1. Shao N, Yang J, Li J, and Shang HF (2014). Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Frontiers in Human Neuroscience, 8: Article 63. https://doi.org/10.3389/fnhum.2014.00063   [Google Scholar]
  1. Song SK, Lee JE, Park HJ, Sohn YH, Lee JD, and Lee PH (2011). The pattern of cortical atrophy in patients with Parkinson's disease according to cognitive status. Movement Disorders, 26(2): 289-296. https://doi.org/10.1002/mds.23477   [Google Scholar]  PMid:21370255
  1. Strominger NL, Demarest RJ and Laemle LB. (2012). Cerebral cortex noback's human nervous system. 7th Edition, Humana Press, New York, USA: 429-438. https://doi.org/10.1007/978-1-61779-779-8_25   [Google Scholar]
  1. Taki Y, Goto R, Evans A, Zijdenbos A, Neelin P, Lerch J, and Sugiura M (2004). Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiology of Aging, 25(4): 455-463. https://doi.org/10.1016/j.neurobiolaging.2003.09.002   [Google Scholar]  PMid:15013566
  1. Tang Y, Whitman GT, Lopez I, and Baloh RW (2001). Brain volume changes on longitudinal magnetic resonance imaging in normal older people. Journal of Neuroimaging, 11(4): 393-400. https://doi.org/10.1111/j.1552-6569.2001.tb00068.x   [Google Scholar]  PMid:11677879
  1. Vingerhoets G, Verleden S, Santens P, Miatton M, and De Reuck J (2003). Predictors of cognitive impairment in advanced Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 74(6): 793-796. https://doi.org/10.1136/jnnp.74.6.793   [Google Scholar]  PMid:12754355 PMCid:PMC1738465
  1. Weintraub D, Moberg PJ, Duda JE, Katz IR, and Stern MB (2004). Effect of psychiatric and other nonmotor symptoms on disability in Parkinson's disease. Journal of the American Geriatrics Society, 52(5): 784-788. https://doi.org/10.1111/j.1532-5415.2004.52219.x   [Google Scholar]  PMid:15086662
  1. Wright WG, Gurfinkel VS, King LA, Nutt JG, Cordo PJ, and Horak FB (2010). Axial kinesthesia is impaired in Parkinson's disease: Effects of levodopa. Experimental Neurology, 225(1): 202-209. https://doi.org/10.1016/j.expneurol.2010.06.016   [Google Scholar]  PMid:20599976 PMCid:PMC3052408
  1. Xia J, Wang J, Tian W, Ding H, Wei Q, Huang H, and Tang L (2013). Magnetic resonance morphometry of the loss of gray matter volume in Parkinson's disease patients. Neural Regeneration Research, 8(27): 2557-2565.   [Google Scholar] PMid:25206566 PMCid:PMC4145936
  1. Zarei M, Ibarretxe-Bilbao N, Compta Y, Hough M, Junque C, Bargallo N, and Martí MJ (2013). Cortical thinning is associated with disease stages and dementia in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 84(8): 875-882. https://doi.org/10.1136/jnnp-2012-304126   [Google Scholar]  PMid:23463873 PMCid:PMC3717586