International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 9 (September 2018), Pages: 47-63

----------------------------------------------

 Review Paper

 Title: Routing protocols from wireless sensor networks to the internet of things: An overview

 Author(s): Salem Belhaj 1, 2, *, Sofian Hamad 1

 Affiliation(s):

 1Computer Science Department, Faculty of Science, Northern Border University, Arar, Saudi Arabia
 2Computer Science Department, University of Tunis /Ecole Nationale Supérieur des Ingénieurs de Tunis, Tunis, Tunisia

 https://doi.org/10.21833/ijaas.2018.09.009

 Full Text - PDF          XML

 Abstract:

This article examined the state-of-the-art overview of the most relevant routing protocols that have been proposed as part of constrained networks, including Wireless Sensor Networks (WSNs) and the Internet of Things (IoTs). This category of network will be one of the main parts of the future global network. Therefore, achieving satisfactory performance on constrained networks is a current research challenge, especially at the routing level. In this vision, the classification of routing protocols in sensor networks is established and the current state of standardization in the area of the Internet of Things is updated. In addition, a comparison of the described protocols is discussed for each class of algorithms. Finally, some technological challenges and some emerging lines of recent research on resource-constrained routing approaches for WSNs and IoTs are briefly discussed. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Routing, WSNs, IoT

 Article History: Received 23 April 2018, Received in revised form 10 July 2018, Accepted 10 July 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.09.009

 Citation:

 Belhaj S and Hamad S (2018). Routing protocols from wireless sensor networks to the internet of things: An overview. International Journal of Advanced and Applied Sciences, 5(9): 47-63

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I9/Belhaj.html

----------------------------------------------

 References (67) 

1. Abbasi AA and Younis M (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14-15): 2826-2841. https://doi.org/10.1016/j.comcom.2007.05.024   [Google Scholar]

2. Akkaya K and Younis M (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3): 325-349. https://doi.org/10.1016/j.adhoc.2003.09.010   [Google Scholar]

3. Akyildiz IF, Su W, Sankarasubramaniam Y, and Cayirci E (2002). Wireless sensor networks: A survey. Computer Networks, 38(4): 393-422. https://doi.org/10.1016/S1389-1286(01)00302-4   [Google Scholar]

4. Alemdar H and Ersoy C (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15): 2688-2710. https://doi.org/10.1016/j.comnet.2010.05.003   [Google Scholar]

5. Al-Karaki JN and Kamal AE (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6): 6-28. https://doi.org/10.1109/MWC.2004.1368893   [Google Scholar]

6. Anastasi G, Conti M, Di Francesco M. and Passarella A (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3): 537-568. https://doi.org/10.1016/j.adhoc.2008.06.003   [Google Scholar]

7. Arora A, Dutta P, Bapat S, Kulathumani V, Zhang H, Naik V, and Choi YR (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks, 46(5): 605-634. https://doi.org/10.1016/j.comnet.2004.06.007   [Google Scholar]

8. Aslan YE, Korpeoglu I, and Ulusoy Ö (2012). A framework for use of wireless sensor networks in forest fire detection and monitoring. Computers, Environment and Urban Systems, 36(6): 614-625.
https://doi.org/10.1016/j.compenvurbsys.2012.03.002   [Google Scholar]

9. Ben-Othman J and Yahya B (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. Journal of Parallel and Distributed Computing, 70(8): 849-857. https://doi.org/10.1016/j.jpdc.2010.02.010   [Google Scholar]

10. Biradar RV, Patil VC, Sawant SR, and Mudholkar RR (2009). Classification and comparison of routing protocols in wireless sensor networks. Special Issue on Ubiquitous Computing Security Systems, 4: 704-711.   [Google Scholar]

11. BLE (2016). Bluetooth core specification. Bluetooth Low Energy. Available online at: https://www.bluetooth.com/ specifications/bluetooth-core-specification

12. Braginsky D and Estrin D (2002). Rumor routing algorthim for sensor networks. In the 1st ACM International Workshop on Wireless Sensor Networks and Applications, ACM, Atlanta, Georgia, USA: 22-31. https://doi.org/10.1145/570738.570742   [Google Scholar]

13. Buratti C, Conti A, Dardari D, and Verdone R (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9(9): 6869-6896. https://doi.org/10.3390/s90906869   [Google Scholar]  PMid:22423202 PMCid:PMC3290495

14. Chen M and Gonzalez S (2007). Applications and design issues for mobile agents in wireless sensor networks. IEEE Wireless Communications, 14(6): 20-26. https://doi.org/10.1109/MWC.2007.4407223   [Google Scholar]

15. Chen M, Gonzalez S, Zhang Y, and Leung VC (2009). Multi-agent itinerary planning for wireless sensor networks. In the International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Springer, Berlin, Heidelberg, Germany: 584-597. https://doi.org/10.1007/978-3-642-10625-5_37   [Google Scholar]

16. Chen M, Yang LT, Kwon T, Zhou L, and Jo M (2011). Itinerary planning for energy-efficient agent communications in wireless sensor networks. IEEE Transactions on Vehicular Technology, 60(7): 3290-3299. https://doi.org/10.1109/TVT.2011.2134116   [Google Scholar]

17. Darabi S, Yazdani N, and Fatemi O (2008). Multimedia-aware MMSPEED: A routing solution for video transmission in WMSN. In the 2nd International Symposium on Advanced Networks and Telecommunication Systems, IEEE, Mumbai, India: 1-3. https://doi.org/10.1109/ANTS.2008.4937803   [Google Scholar]

18. Dardari D, Conti A, Ferner U, Giorgetti A, and Win MZ (2009). Ranging with ultrawide bandwidth signals in multipath environments. Proceedings of the IEEE, 97(2): 404-426. https://doi.org/10.1109/JPROC.2008.2008846   [Google Scholar]

19. Demirkol I, Ersoy C, and Alagoz F (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 44(4): 115-121. https://doi.org/10.1109/MCOM.2006.1632658   [Google Scholar]

20. Dunkels A and Vasseur JP (2008). IP for smart objects. Technical Report, Internet Protocol for Smart Objects (IPSO) Alliance, White Paper 1. Available online at: http://www.ipso-alliance.org/wp-content/media/why_ip.pdf 

21. Đurišić MP, Tafa Z, Dimić G, and Milutinović V (2012). A survey of military applications of wireless sensor networks. In the Mediterranean Conference on Embedded Computing, IEEE, Bar, Montenegro: 196-199.   [Google Scholar]

22. Ehsan S and Hamdaoui B (2012). A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Communications Surveys and Tutorials, 14(2): 265-278. https://doi.org/10.1109/SURV.2011.020211.00058   [Google Scholar]

23. Faulkner M, Olson M, Chandy R, Krause J, Chandy KM, and Krause A (2011). The next big one: Detecting earthquakes and other rare events from community-based sensors. In the 10th International Conference on Information Processing in Sensor Networks, IEEE, Chicago, USA: 13-24.   [Google Scholar]

24. Felemban E, Lee CG, and Ekici E (2006). MMSPEED: Multipath Multi-SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(6): 738-754. https://doi.org/10.1109/TMC.2006.79   [Google Scholar]

25. Gomez C and Paradells J (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6): 92-101. https://doi.org/10.1109/MCOM.2010.5473869   [Google Scholar]

26. Goyal D and Tripathy MR (2012). Routing protocols in wireless sensor networks: A survey. In the Second International Conference on Advanced Computing and Communication Technologies, IEEE, Rohtak, Haryana, India: 474-480. https://doi.org/10.1109/ACCT.2012.98   [Google Scholar]

27. He T, Stankovic JA, Lu C, and Abdelzaher T (2003). SPEED: A stateless protocol for real-time communication in sensor networks. In the 23rd International Conference on Distributed Computing Systems, IEEE, Providence, Rhode Island, USA: 46-55. https://doi.org/10.21236/ADA436741   [Google Scholar]

28. Heinzelman WR, Chandrakasan A, and Balakrishnan H (2000). Energy-efficient communication protocol for wireless microsensor networks. In the 33rd annual Hawaii International Conference on System Sciences, IEEE, Maui, USA. https://doi.org/10.1109/HICSS.2000.926982   [Google Scholar]

29. Heinzelman WR, Kulik J, and Balakrishnan H (1999). Adaptive protocols for information dissemination in wireless sensor networks. In the 5th annual ACM/IEEE International Conference on Mobile Computing and Networking, ACM, Seattle, Washington, USA: 174-185. https://doi.org/10.1145/313451.313529   [Google Scholar]

30. Hou X, Tipper D, and Kabara J (2004). Label-based multipath routing (LMR) in wireless sensor networks. In the 6th International Symposium on Advanced Radio Technologies, Boulder, USA: 113-118.   [Google Scholar]

31. IEEE SA (2015). IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) - IEEE standard for low-rate wireless networks. IEEE Standard Association. Available online at: https://standards.ieee.org/findstds/standard/802.15.4-2015.html

32. IETF (2018). IPv6 over Low power WPAN (6lowpan). Available online at: https://datatracker.ietf.org/wg/6lowpan/about/

33. Intanagonwiwat C, Govindan R, and Estrin D (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In the 6th Annual International Conference on Mobile Computing and Networking, ACM, Boston, Massachusetts, USA: 56-67. https://doi.org/10.1145/345910.345920   [Google Scholar]

34. Jolly V and Latifi S (2006). Comprehensive study of routing management in wireless sensor networks-Part-I. In the International Conference on Wireless Networks, Las Vegas, USA: 37-44.   [Google Scholar]

35. Kortuem G, Kawsar F, Sundramoorthy V, and Fitton D (2010). Smart objects as building blocks for the internet of things. IEEE Internet Computing, 14(1): 44-51. https://doi.org/10.1109/MIC.2009.143   [Google Scholar]

36. Kulik J, Heinzelman W, and Balakrishnan H (2002). Negotiation-based protocols for disseminating information in wireless sensor networks. Wireless Networks, 8(2/3): 169-185. https://doi.org/10.1023/A:1013715909417   [Google Scholar]

37. Leong B, Liskov B, and Morris R (2006). Geographic routing without planarization. In the 3rd Symposium on Networked Systems Design and Implementation, San Jose, USA, 6: 1-25.   [Google Scholar]

38. Lim H and Kim C (2001). Flooding in wireless ad hoc networks. Computer Communications, 24(3-4): 353-363. https://doi.org/10.1016/S0140-3664(00)00233-4   [Google Scholar]

39. Lindsey S and Raghavendra CS (2002). PEGASIS: Power-efficient gathering in sensor information systems. In the IEEE Aerospace Conference Proceedings, IEEE, Big Sky, USA, 3: 3-3.   [Google Scholar]

40. Liu X (2012). A survey on clustering routing protocols in wireless sensor networks. Sensors, 12(8): 11113-11153. https://doi.org/10.3390/s120811113   [Google Scholar]  PMid:23112649 PMCid:PMC3472877

41. Manjeshwar A and Agrawal DP (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. IEEE Int'l Parallel and Distributed Processing Symposium, San Francisco, USA. https://doi.org/10.1109/IPDPS.2001.925197   [Google Scholar]

42. Manjeshwar A and Agrawal DP (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In the IEEE Int'l Parallel and Distributed Processing Symposium, Fort Lauderdale, Florida, USA. https://doi.org/10.1109/IPDPS.2002.1016600   [Google Scholar]

43. Montenegro G, Kushalnagar N, Hui J, and Culler D (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC4944. Available online at: http://tools.ietf.org/html/rfc4944

44. Newsome J and Song D (2003). GEM: Graph EMbedding for routing and data-centric storage in sensor networks without geographic information. In the 1st International Conference on Embedded Networked Sensor Systems, ACM, Los Angeles, California, USA: 76-88.   [Google Scholar]

45. Ogundile OO and Alfa AS (2017). A survey on an energy-efficient and energy-balanced routing protocol for wireless sensor networks. Sensors, 17(5): 1-5. https://doi.org/10.3390/s17051084   [Google Scholar]  PMid:28489054 PMCid:PMC5470474

46. Pantazis NA, Nikolidakis SA, and Vergados DD (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(2): 551-591. https://doi.org/10.1109/SURV.2012.062612.00084   [Google Scholar]

47. Porcino D and Hirt W (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7): 66-74. https://doi.org/10.1109/MCOM.2003.1215641   [Google Scholar]

48. Radi M, Dezfouli B, Bakar KA, and Lee M (2012). Multipath routing in wireless sensor networks: survey and research challenges. Sensors, 12(1): 650-685. https://doi.org/10.3390/s120100650   [Google Scholar]  PMid:22368490 PMCid:PMC3279234

49. Ramesh MV (2014). Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Networks, 13: 2-18. https://doi.org/10.1016/j.adhoc.2012.09.002   [Google Scholar]

50. Rawat P, Singh KD, Chaouchi H, and Bonnin JM (2014). Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing, 68(1): 1-48. https://doi.org/10.1007/s11227-013-1021-9   [Google Scholar]

51. Romer K and Mattern F (2004). The design space of wireless sensor networks. IEEE Wireless Communications, 11(6): 54-61. https://doi.org/10.1109/MWC.2004.1368897   [Google Scholar]

52. Sadagopan N, Krishnamachari B, and Helmy A (2003). The ACQUIRE mechanism for efficient querying in sensor networks. In the 1st IEEE International Workshop on Sensor Network Protocols and Applications, IEEE, Anchorage, AK, USA: 149-155. https://doi.org/10.1109/SNPA.2003.1203365   [Google Scholar]

53. Sadagopan N, Krishnamachari B, and Helmy A (2005). Active query forwarding in sensor networks. Ad Hoc Networks, 3(1): 91-113. https://doi.org/10.1016/j.adhoc.2003.08.001   [Google Scholar]

54. Sohrabi K, Gao J, Ailawadhi V, and Pottie GJ (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5): 16-27. https://doi.org/10.1109/98.878532   [Google Scholar]

55. Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, and Borozan V (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88: 297-307. https://doi.org/10.1016/j.jclepro.2014.04.036   [Google Scholar]

56. Tarique M, Tepe KE, Adibi S, and Erfani S (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6): 1125-1143. https://doi.org/10.1016/j.jnca.2009.07.002   [Google Scholar]

57. Tilak S, Abu-Ghazaleh NB, and Heinzelman W (2002). A taxonomy of wireless micro-sensor network models. ACM SIGMOBILE Mobile Computing and Communications Review, 6(2): 28-36. https://doi.org/10.1145/565702.565708   [Google Scholar]

58. Truong HL and Dustdar S (2015). Principles for engineering IoT cloud systems. IEEE Cloud Computing, 2(2): 68-76. https://doi.org/10.1109/MCC.2015.23   [Google Scholar]

59. Winter T (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC6550. https://doi.org/10.17487/rfc6550   [Google Scholar]

60. Wu Q, Rao NS, Barhen J, Iyenger SS, Vaishnavi VK, Qi H, and Chakrabarty K (2004). On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering, 16(6): 740-753. https://doi.org/10.1109/TKDE.2004.12   [Google Scholar]

61. Yadav R, Varma S, and Malaviya N (2009). A survey of MAC protocols for wireless sensor networks. UbiCC Journal, 4(3): 827-833.   [Google Scholar]

62. Yao Y and Gehrke J (2002). The cougar approach to in-network query processing in sensor networks. ACM Sigmod Record, 31(3): 9-18. https://doi.org/10.1145/601858.601861   [Google Scholar]

63. Ye F, Zhong G, Lu S, and Zhang L (2005). Gradient broadcast: A robust data delivery protocol for large scale sensor networks. Wireless Networks, 11(3): 285-298. https://doi.org/10.1007/s11276-005-6612-9   [Google Scholar]

64. Yi WY, Lo KM, Mak T, Leung KS, Leung Y, and Meng ML (2015). A survey of wireless sensor network based air pollution monitoring systems. Sensors, 15(12): 31392-31427. https://doi.org/10.3390/s151229859   [Google Scholar]  PMid:26703598 PMCid:PMC4721779

65. Yick J, Mukherjee B, and Ghosal D (2008). Wireless sensor network survey. Computer Networks, 52(12): 2292-2330. https://doi.org/10.1016/j.comnet.2008.04.002   [Google Scholar]

66. Yu Y, Govindan R, and Estrin D (2001). Geographical and energy-aware routing: a recursive data dissemination protocol for wireless sensor networks. Technical Report, UCLA Computer Science Department, Los Angeles, California, USA.   [Google Scholar]

67. ZigBee (2017). ZigBee Alliance. Available online at: http://www.zigbee.org