International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 9 (September 2018), Pages: 18-22

----------------------------------------------

 Original Research Paper

 Title: A mixed integer programming based approach for unit commitment problem

 Author(s): Khalid Alqunun *

 Affiliation(s):

 College of Engineering, University of Hail, Hail, Saudi Arabia

 https://doi.org/10.21833/ijaas.2018.09.004

 Full Text - PDF          XML

 Abstract:

Unit commitment (UC) problem is a challenging task in power system operation that has attracted much attention in the two last decades. It aims to find the optimum statues of the thermal units and their optimum to the predicted load demands in order to minimize the total production cost. Within this context, this paper presents a piecewise linear approximation method for solving this mixed integer problem (MIP). Power balance, generation capacity, minimum up/down times and spinning reserve constraints are considered in this study. The proposed method is implemented in GAMS 24.2. Simulation results are carried out using the ten-unit system. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Unit commitment, Mixed-integer problem, Spinning reserve, Piecewise linear approximation

 Article History: Received 21 April 2018, Received in revised form 27 June 2018, Accepted 3 July 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.09.004

 Citation:

 Alqunun K (2018). A mixed integer programming based approach for unit commitment problem. International Journal of Advanced and Applied Sciences, 5(9): 18-22

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I9/Alqunun.html

----------------------------------------------

 References (17) 

  1. Alqunun K and Crossley PA (2016). Rated energy impact of BESS on total operation cost in a microgrid. In the IEEE Smart Energy Grid Engineering, IEEE, Oshawa, Canada: 292-300.   [Google Scholar]  
  2. Carrion M and Arroyo JM (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3): 1371-1378. https://doi.org/10.1109/TPWRS.2006.876672   [Google Scholar] 
  3. Damousis IG, Bakirtzis AG, and Dokopoulos PS (2004). A solution to the unit-commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems, 19(2): 1165-1172. https://doi.org/10.1109/TPWRS.2003.821625   [Google Scholar] 
  4. Frangioni A, Gentile C, and Lacalandra F (2009). Tighter approximated MILP formulations for unit commitment problems. IEEE Transactions on Power Systems, 24(1): 105-113. https://doi.org/10.1109/TPWRS.2008.2004744   [Google Scholar] 
  5. Garver LL (1963). Power generation scheduling by integer programming-development of theory. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 81(3): 730-734.   [Google Scholar]     
  6. Gubina F and Strmcnik B (1991). An approach to unit commitment via Lagrangian relaxation method. In the 6th Mediterranean Electrotechnical Conference, IEEE, LJubljana, Slovenia: 1462-1465. https://doi.org/10.1109/MELCON.1991.161759   [Google Scholar] 
  7. Lopez JA, Ceciliano-Meza JL, Moya IG, and Gomez RN (2012). A MIQCP formulation to solve the unit commitment problem for large-scale power systems. International Journal of Electrical Power and Energy Systems, 36(1): 68-75. https://doi.org/10.1016/j.ijepes.2011.10.025   [Google Scholar] 
  8. Murata D and Yamashiro S (2005). Unit commitment scheduling by Lagrange relaxation method taking into account transmission losses. Electrical Engineering in Japan, 152(4): 27-33. https://doi.org/10.1002/eej.20119   [Google Scholar] 
  9. Ostrowski J, Anjos MF, and Vannelli A (2012). Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Transactions on Power Systems, 27(1): 39-46. https://doi.org/10.1109/TPWRS.2011.2162008   [Google Scholar] 
  10. Saravanan B, Kumar C, and Kothari DP (2016). A solution to unit commitment problem using fireworks algorithm. International Journal of Electrical Power and Energy Systems, 77: 221-227. https://doi.org/10.1016/j.ijepes.2015.11.030   [Google Scholar] 
  11. Senjyu T, Shimabukuro K, Uezato K, and Funabashi T (2003). A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems, 18(2): 882-888. https://doi.org/10.1109/TPWRS.2003.811000   [Google Scholar] 
  12. Singhal PK and Sharma RN (2011). Dynamic programming approach for solving power generating unit commitment problem. In the 2nd International Conference on Computer and Communication Technology, IEEE, Allahabad, India: 298-303. https://doi.org/10.1109/ICCCT.2011.6075161   [Google Scholar] 
  13. Tuffaha M and Gravdahl JT (2013). Mixed-integer formulation of unit commitment problem for power systems: Focus on start-up cost. In the 39th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Vienna, Austria: 8160-8165.   [Google Scholar]     
  14. Virmani S, Adrian EC, Imhof K, and Mukherjee S (1989). Implementation of a Lagrangian relaxation based unit commitment problem. IEEE Transactions on Power Systems, 4(4): 1373-1380. https://doi.org/10.1109/59.41687   [Google Scholar] 
  15. Wang L and Singh C (2009). Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm. Applied Soft Computing, 9(3): 947-953. https://doi.org/10.1016/j.asoc.2008.11.010   [Google Scholar] 
  16. Wood AJ and Wollenberg BF (2012). Power generation, operation, and control. John Wiley and Sons, Hoboken, New Jersey, USA.   [Google Scholar]     
  17. Wu L (2011). A tighter piecewise linear approximation of quadratic cost curves for unit commitment problems. IEEE Transactions on Power Systems, 26(4): 2581-2583. https://doi.org/10.1109/TPWRS.2011.2148370   [Google Scholar]