International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 7 (July 2018), Pages: 108-115

----------------------------------------------

 Original Research Paper

 Title: Hall current and suction/injection effects on the entropy generation of third grade fluid

 Author(s): Abiodun A. Opanuga 1, *, Jacob A. Gbadeyan 2, Hilary I. Okagbue 1, Olasunmbo O. Agboola 1

 Affiliation(s):

 1Department of Mathematics, College of Science and Technology, Covenant University, Ota, Nigeria
 2Department of Mathematics, Faculty of Physical Science, University of Ilorin, Ilorin, Nigeria

 https://doi.org/10.21833/ijaas.2018.07.013

 Full Text - PDF          XML

 Abstract:

In this work, effects of Hall current and suction/injection on a steady, viscous, incompressible and electrically conducting third grade fluid past a semi-infinite plate with entropy generation is investigated. It is assumed that the fluid motion is induced by applied pressure gradient. Hot fluid is injected with a constant velocity at the injection wall while it is sucked off at the upper wall with the same velocity. The governing equations of Navier-Stoke, energy and entropy generation obtained are non-dimensionalised, the resulting dimensionless velocity and temperature profiles are solved by Adomian decomposition technique due to the nonlinearity of the coupled system of equations. The obtained solution for the velocity profile is validated by the exact solution and the existing one in literature at M = 0 and the analytical expressions for fluid velocity and temperature are utilized to calculate the entropy generation and irreversibility ratio. Various plots are presented and discussed. It is found that increasing Hall current parameter increases primary velocity, temperature, entropy generation and Bejan number while the reverse trend is observed when both suction/injection and magnetic field parameters are increased. It is also noticed that entropy production at the upper wall is due to heat transfer. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Hall current, Suction/Injection, Third grade fluid, Entropy generation, Adomian decomposition method

 Article History: Received 25 November 2017, Received in revised form 25 March 2018, Accepted 10 May 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.07.013

 Citation:

 Opanuga AA, Gbadeyan JA, Okagbue HI, and Agboola OO (2018). Hall current and suction/injection effects on the entropy generation of third grade fluid. International Journal of Advanced and Applied Sciences, 5(7): 108-115

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I7/Opanuga.html

----------------------------------------------

 References (46) 

  1. Abd El-Aziz M and Nabil T (2012). Homotopy analysis solution of hydromagnetic mixed convection flow past an exponentially stretching sheet with Hall current. Mathematical Problems in Engineering, 2012: Article ID 454023, 26 Pages. https://doi.org/10.1155/2012/454023   [Google Scholar]  
  2. Abo-Eldahab EM and El Aziz MA (2004). Hall current and ohmic heating effects on mixed convection boundary layer flow of a micropolar fluid from a rotating cone with power-law variation in surface temperature. International Communications in Heat and Mass Transfer, 31(5): 751-762. https://doi.org/10.1016/S0735-1933(04)00062-4   [Google Scholar] 
  3. Aboeldahab EM and Elbarbary EM (2001). Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer. International Journal of Engineering Science, 39(14): 1641-1652. https://doi.org/10.1016/S0020-7225(01)00020-9   [Google Scholar] 
  4. Adesanya SO and Makinde OD (2012). Heat transfer to magnetohydrodynamic non-Newtonian couple stress pulsatile flow between two parallel porous plates. Zeitschrift für Naturforschung A, 67(10-11): 647-656. https://doi.org/10.5560/zna.2012-0073   [Google Scholar] 
  5. Adesanya SO, Falade JA, Jangili S, and Bég OA (2017). Irreversibility analysis for reactive third-grade fluid flow and heat transfer with convective wall cooling. Alexandria Engineering Journal, 56(1): 153-160. https://doi.org/10.1016/j.aej.2016.09.017   [Google Scholar] 
  6. Adesanya SO, Kareem SO, Falade JA, and Arekete SA (2015a). Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy, 93: 1239-1245. https://doi.org/10.1016/j.energy.2015.09.115   [Google Scholar] 
  7. Adesanya SO, Oluwadare EO, Falade JA, and Makinde OD (2015b). Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions. Journal of Magnetism and Magnetic Materials, 396: 295-303. https://doi.org/10.1016/j.jmmm.2015.07.096   [Google Scholar] 
  8. Ahmad M, Zaman H, and Rehman N (2010). Effects of hall current on unsteady MHD flows of a second grade fluid. Central European Journal of Physics, 8(3): 422-431. https://doi.org/10.2478/s11534-009-0083-z   [Google Scholar] 
  9. Ajibade AO, Jha BK, and Omame A (2011). Entropy generation under the effect of suction/injection. Applied Mathematical Modelling, 35(9): 4630-4646. https://doi.org/10.1016/j.apm.2011.03.027   [Google Scholar] 
  10. Asghar S, Mohyuddin MR, and Hayat T (2005). Effects of Hall current and heat transfer on flow due to a pull of eccentric rotating disks. International journal of Heat and Mass transfer, 48(3-4): 599-607. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.023   [Google Scholar] 
  11. Aydın O and Kaya A (2008). Radiation effect on MHD mixed convection flow about a permeable vertical plate. Heat and Mass Transfer, 45(2): 239-246. https://doi.org/10.1007/s00231-008-0428-y   [Google Scholar] 
  12. Ayub M, Zaman H, and Ahmad M (2010). Series solution of hydromagnetic flow and heat transfer with Hall effect in a second grade fluid over a stretching sheet. Open Physics, 8(1): 135-149. https://doi.org/10.2478/s11534-009-0110-0   [Google Scholar] 
  13. Bejan A (1982). Entropy generation through heat and fluid flow. Wiley, New York, USA.   [Google Scholar]  PMid:25588237     
  14. Bouabid M, Magherbi M, Hidouri N, and Brahim AB (2011). Entropy generation at natural convection in an inclined rectangular cavity. Entropy, 13(5): 1020-1033. https://doi.org/10.3390/e13051020   [Google Scholar] 
  15. Cowling TG (1957). Magnetohydrodynamics. Interscience Tracts Physics and Astronomy, 4: 24-27. https://doi.org/10.1063/1.3060498   [Google Scholar] 
  16. Das S and Jana RN (2013). Effect of hall current on entropy generation in porous channel with suction/injection. International Journal of Energy and Technology, 5(25): 1-11.   [Google Scholar]     
  17. Das S, Maji SL, and Jana RN (2012). Hall effects on unsteady hydromagnetic flow induced by a porous plate. International Journal of Computer Applications, 57(18): 37-44.   [Google Scholar]     
  18. Eegunjobi AS and Makinde OD (2012). Effects of Navier slip on entropy generation in a porous channel with suction/injection. Journal of Thermal Science and Technology, 7(4): 522-535. https://doi.org/10.1299/jtst.7.522   [Google Scholar] 
  19. Eldabe NTM, Hassan AA, and Mohamed MA (2003). Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zeitschrift für Naturforschung A, 58(4): 204-210. https://doi.org/10.1515/zna-2003-0405   [Google Scholar] 
  20. Gbadeyan JA, Idowu AS, Areo AO, and Olaleye. OP (2010). The radiative effect on velocity, magnetic and temperature fields of a magneto hydrodynamic oscillatory flow past a limiting surface with variable suction. Journal of Mathematical Sciences, 21: 395-411.   [Google Scholar]     
  21. Hassan AR and Gbadeyan JA (2015). A reactive hydromagnetic internal heat generating fluid flow through a channel. International Journal of Heat and Technology, 33(3): 43-50. https://doi.org/10.18280/ijht.330306   [Google Scholar] 
  22. Hayat T, Abbas Z, Sajid M, and Asghar S (2007). The influence of thermal radiation on MHD flow of a second grade fluid. International Journal of Heat and Mass Transfer, 50(5-6): 931-941. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.014   [Google Scholar] 
  23. Hayat T, Shafiq A, Alsaedi A, and Asghar S (2015). Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity. AIP Advances, 5(8): 087108. https://doi.org/10.1063/1.4928321   [Google Scholar] 
  24. Jha BK and Apere CA (2010). Combined effect of hall and ion-slip currents on unsteady mhd couette flows in a rotating system. Journal of the Physical Society of Japan, 79(10): 1-9.   [Google Scholar]     
  25. Meyer RC (1958). On reducing aerodynamic heat-transfer rates by magnetohydrodynamic techniques. Journal of the Aerospace Sciences, 25(9): 561-566. https://doi.org/10.2514/8.7781   [Google Scholar] 
  26. Mohamed RA (2009). Double-diffusive convection-radiation interaction on unsteady MHD flow over a vertical moving porous plate with heat generation and Soret effects. Applied Mathematical Sciences, 3(13): 629-651.   [Google Scholar]     
  27. Mutuku-Njane WN and Makinde OD (2013). Combined effect of Buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate. The Scientific World Journal, 2013: Article ID 725643, 8 Pages. https://doi.org/10.1155/2013/725643   [Google Scholar] 
  28. Opanuga AA, Gbadeyan JA, and Iyase SA (2017a). Second law analysis of hydromagnetic couple stress fluid embedded in a non-Darcian porous medium. International Journal of Applied Mathematics, 47(3): 287-294.   [Google Scholar]     
  29. Opanuga AA, Gbadeyan JA, Iyase SA, and Okagbue HI (2016). Effect of thermal radiation on the entropy generation of hydromagnetic flow through porous channel. The Pacific Journal of Science and Technology, 17(2): 59-68.   [Google Scholar]     
  30. Opanuga AA, Okagbue HI, Agboola OO, and Imaga OF (2017b). Entropy generation analysis of buoyancy effect on hydromagnetic poiseuille flow with internal heat generation. Defect and Diffusion Forum, 378: 102-112. https://doi.org/10.4028/www.scientific.net/DDF.378.102   [Google Scholar] 
  31. Opanuga AA, Okagbue HI, and Agboola OO (2017c). Irreversibility analysis of a radiative MHD Poiseuille Flow through Porous Medium with slip condition. In the World Congress on Engineering 2017, London, UK, 1: 1-5.   [Google Scholar]     
  32. Opanuga AA, Owoloko EA, Agboola OO, and Okagbue HI (2017d). Application of homotopy perturbation and modified Adomian decomposition methods for higher order boundary value problems. In the World Congress on Engineering 2017, London, UK, 1: 1-5.   [Google Scholar]     
  33. Opanuga AA, Owoloko EA, and Okagbue HI (2017e). Comparison homotopy perturbation and adomian decomposition techniques for parabolic equations. In The World Congress on Engineering and Computer Science, San Francisco, USA: 876-882.   [Google Scholar]     
  34. Pal D, Talukdar B, Shivakumara IS, and Vajravelu K (2012). Effects of hall current and chemical reaction on oscillatory mixed convection-radiation of a micropolar fluid in a rotating system. Chemical Engineering Communications, 199(8): 943-965. https://doi.org/10.1080/00986445.2011.616248   [Google Scholar] 
  35. Pop I and Watanabe T (1992). The effects of suction or injection in boundary layer flow and heat transfer on a continuous moving surface. Technische Mechanik, 13: 49-54.   [Google Scholar]     
  36. Rahimi J, Ganji DD, Khaki M, and Hosseinzadeh K (2016). Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alexandria Engineering Journal, 56(4): 621-627. https://doi.org/10.1016/j.aej.2016.11.006   [Google Scholar] 
  37. Raptis A and Ram PC (1984). Effects of hall current and rotation. Astrophysics and space science, 106(2): 257-264. https://doi.org/10.1007/BF00650353   [Google Scholar] 
  38. Rashidi MM, Erfani E, Bég OA, and Ghosh SK (2011). Modified differential transform method (DTM) simulation of hydromagnetic multi-physical flow phenomena from a rotating disk. World Journal of Mechanics, 1(05): 217-230. https://doi.org/10.4236/wjm.2011.15028   [Google Scholar] 
  39. Shehzad SA, Hayat T, and Alsaedi A (2015). Influence of convective heat and mass conditions in MHD flow of nanofluid. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(2): 465-474. https://doi.org/10.1515/bpasts-2015-0053   [Google Scholar] 
  40. Siddiqui AM, Mohyuddin MR, Hayat T, and Asghar S (2003). Some more inverse solutions for steady flows of a second-grade fluid. Archives of Mechanics, 55(4): 373-387.   [Google Scholar]     
  41. Srinivasacharya D and Kaladhar K (2012). Mixed convection flow of couple stress fluid between parallel vertical plates with Hall and Ion-slip effects. Communications in Nonlinear Science and Numerical Simulation, 17(6): 2447-2462. https://doi.org/10.1016/j.cnsns.2011.10.006   [Google Scholar] 
  42. Srinivasacharya D and Srikanth D (2008). Effect of couple stresses on the pulsatile flow through a constricted annulus. Comptes Rendus Mecanique, 336(11-12): 820-827. https://doi.org/10.1016/j.crme.2008.09.008   [Google Scholar] 
  43. Uwanta IJ and Hamza MM (2014). Effect of suction/injection on unsteady hydromagnetic convective flow of reactive viscous fluid between vertical porous plates with thermal diffusion. International Scholarly Research Notices, 2014: Article ID 980270, 14 Pages. https://doi.org/10.1155/2014/980270   [Google Scholar] 
  44. Vajravelu K and Roper T (1999). Flow and heat transfer in a second grade fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 34(6): 1031-1036. https://doi.org/10.1016/S0020-7462(98)00073-0   [Google Scholar] 
  45. Wenchang T and Mingyu X (2004). Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mechanica Sinica, 20(5): 471-476. https://doi.org/10.1007/BF02484269   [Google Scholar] 
  46. Zueco J and Bég OA (2009). Network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects. International Journal of Applied Mathematics and Mechanics, 5(2): 1-16.   [Google Scholar]