International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 6 (June 2018), Pages: 19-24

----------------------------------------------

 Original Research Paper

 Title: On the convergence of double Elzaki transform

 Author(s): Muhammad Imran Idrees 1, Zulfiqar Ahmed 2, Muhammad Awais 2, Zahida Perveen 1, *

 Affiliation(s):

 1Department of Mathematics, Lahore Garrison University, DHA, Phase VI, Lahore, Pakistan
 2Department of Computer Science, GIFT University, Gujranwala, Pakistan

 https://doi.org/10.21833/ijaas.2018.06.003

 Full Text - PDF          XML

 Abstract:

In this research, we have studied the convergence properties of Double Elzaki transformation and the results have been presented in the form of theorems on convergence, absolute convergence and uniform convergence of Double Elzaki transformation. The Double Elzaki transform of double Integral has also been discussed for integral evaluation. Finally, we have solved a Volterra integro-partial differential equation by using Double Elzaki transformation. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Double Elzaki transform, Inverse Elzaki transform, Integro-partial differential equations

 Article History: Received 20 December 2017, Received in revised form 12 March 2018, Accepted 19 March 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.06.003

 Citation:

 Idrees MI, Ahmed Z, Awais M, and Perveen Z (2018). On the convergence of double Elzaki transform. International Journal of Advanced and Applied Sciences, 5(6): 19-24

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I6/Idrees.html

----------------------------------------------

 References (17) 

  1. Belgacem FBM (2006). Introducing and analyzing deeper Sumudu properties. Nonlinear Studies, 13(1): 23-41.   [Google Scholar] 
  2. Belgacem FBM (2007). Applications of Sumudu transform to indefinite periodic parabolic equations. In the 6th International Conference on Mathematical Problems and Aerospace Sciences, (ICNPAA 06), Cambridge Scientific Publishers, Cambridge, UK: 51-60.   [Google Scholar] PMCid:PMC1779623     
  3. Belgacem FBM (2009). Sumudu applications to Maxwell's equations. PIERS Online, 5(4): 355-360. https://doi.org/10.2529/PIERS090120050621   [Google Scholar] 
  4. Belgacem FBM (2010). Sumudu transform applications to Bessel functions and equations. Applied Mathematical Sciences, 4(74): 3665-3686.   [Google Scholar]     
  5. Belgacem FBM and Al-Shemas EHN (2014). Towards a Sumudu based estimation of large scale disasters environmental fitness changes adversely affecting population dispersal and persistence. In the AIP Conference Proceedings, AIP, 1637(1): 1442-1449. https://doi.org/10.1063/1.4907311  [Google Scholar] 
  6. Belgacem FBM and Karaballi AA (2006). Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis. 2006: Article ID 91083, 23 pages. https://doi.org/10.1155/JAMSA/2006/91083   [Google Scholar]   
  7. Belgacem FBM and Silambarasan R (2017a). A distinctive Sumudu treatment of trigonometric functions. Journal of Computational and Applied Mathematics, 312: 74-81. https://doi.org/10.1016/j.cam.2015.12.036   [Google Scholar] 
  8. Belgacem FBM and Silambarasan R (2017b). Sumudu transform of Dumont bimodular Jacobi elliptic functions for arbitrary powers. In the AIP Conference Proceedings, AIP Publishing, 1798(1): 020026. https://doi.org/10.1063/1.4972618   [Google Scholar] 
  9. Belgacem FBM, Karaballi AA, and Kalla SL (2003). Analytical investigations of the Sumudu transform and applications to integral production equations. Mathematical Problems in Engineering, 2003(3): 103-118. https://doi.org/10.1155/S1024123X03207018   [Google Scholar] 
  10. Elzaki TM (2011a). Application of new transform "Elzaki transform" to partial differential equations. Global Journal of Pure and Applied Mathematics, 7(1): 65-70.   [Google Scholar]     
  11. Elzaki TM (2011b). The new integral transform "Elzaki Transform". Global Journal of Pure and Applied Mathematics, 7(1): 57-64.   [Google Scholar]     
  12. Goswami P and Belgacem FBM (2012). Solving special fractional differential equations by Sumudu transform. In AIP Conference Proceedings, AIP Publishing, 1493(1): 111-115. https://doi.org/10.1063/1.4765478   [Google Scholar] 
  13. Moghadam MM and Saeedi H (2010). Application of differential transforms for solving the Volterra integro-partial differential equations. Iranian Journal of Science and Technology, Transaction A, 34(A1): 59-70.   [Google Scholar]     
  14. Schiff JL (2013). The Laplace transform: Theory and applications. Springer Science and Business Media, Berlin, Germany.   [Google Scholar]    
  15.  Trench WF (2012). Functions defined by improper integrals. Available online at: https://faculty.ksu.edu.sa/fawaz/File282/Books/TRENCH_IMPROPER_FUNCTIONS.pdf   [Google Scholar]    
  16. Watugala GK (1993). Sumudu transform: A new integral transform to solve differential equations and control engineering problems. Integrated Education, 24(1): 35-43. https://doi.org/10.1080/0020739930240105   [Google Scholar] 
  17. Widder DV (2005). Advanced Calculus. 2nd edition, Prentice Hall of India Private Limited, New Delhi, India. PMCid:PMC2361979