International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 6 (June 2018), Pages: 70-78

----------------------------------------------

 Original Research Paper

 Title: Application of silicon micro hall sensors in variable temperature scanning hall probe microscopy (SHPM) using multiple feedback techniques

 Author(s): Rizwan Akram *

 Affiliation(s):

 Faculty of Electrical Engineering, Qassim University, P. O. B. 6677, Buraidah, 51452, Saudi Arabia

 https://doi.org/10.21833/ijaas.2018.06.011

 Full Text - PDF          XML

 Abstract:

A quest for a quantitative and noninvasive method for the measurement of local magnetic fields along with surface morphology with high spatial and field resolution at variable temperatures calls for a selection of suitable magnetic sensor and appropriate scanning system. Scanning Hall probe microscopy (SHPM) is one of the choices as it addresses the stated issues and complements the other magnetic imaging methods. Si-Hall sensors due to their compatibility with CMOS technology and controllability of its parameters makes it preferable compared to other compound semiconductors. However, there have been few reports on magnetic imaging with Si-Hall sensors at high-temperatures and the selection of best possible feedback mechanism for them has not been addressed. In this article, working temperature range and the impediments related to feedback (STM tracking or AFM tracking) configuration for Si-Hall sensors along with feasibility of switchable feedback tracking configuration has been investigated. Si-Hall sensors (~0.7μm × 0.7μm × 510nm) have been fabricated with integrated Gold tip for STM-feedback and were mounted on Quartz Tuning Fork (QTF) for AFM-feedback. Comparison of simultaneous scans of magnetic and topographic data for a Hard disc sample, illustrated that the Si-Hall sensors are capable of scanning with comparable quality of images as with AlGaAs-HP for low temperatures (down to LNT) using STM feedback and as GaN/AlGaN-HP for high temperatures up to 150oC using AFM feedback. Use of QTF with Si-HP provided an option to electronically switch the feedback configuration between STM and AFM without the need to change front end assembly. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Hall effect devices, Scanning hall probe microscopy, Silicon on insulator, Quartz tuning fork, Atomic force microscopy, Scanning tunneling microscopy

 Article History: Received 30 December 2017, Received in revised form 24 March 2018, Accepted 8 April 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.06.011

 Citation:

 Akram R (2018). Application of silicon micro hall sensors in variable temperature scanning hall probe microscopy (SHPM) using multiple feedback techniques. International Journal of Advanced and Applied Sciences, 5(6): 70-78

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I6/Akram.html

----------------------------------------------

 References (37) 

  1. Abderrahmane A, Koide S, Sato SI, Ohshima T, Sandhu A, and Okada H (2012). Robust Hall effect magnetic field sensors for operation at high temperatures and in harsh radiation environments. IEEE Transactions on Magnetics, 48(11): 4421-4423. https://doi.org/10.1109/TMAG.2012.2196986    [Google Scholar] 
  2. Akram R, Dede M, and Oral A (2008). Variable temperature-scanning Hall probe microscopy with GaN/AlGaN two-dimensional electron gas (2DEG) micro Hall sensors in 4.2–425 K range using novel quartz tuning fork AFM feedback. IEEE Transactions on Magnetics, 44(11): 3255-3260. https://doi.org/10.1109/TMAG.2008.2001622    [Google Scholar] 
  3. Akram R, Dede M, and Oral A (2009). Imaging capability of pseudomorphic high electron mobility transistors, Al Ga N/ Ga N, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125° C. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27(2): 1006-1010. https://doi.org/10.1116/1.3056172    [Google Scholar] 
  4. Akram R, Fardmanesh M, Schubert J, Zander W, Banzet M, Lomparski D, and Krause HJ (2006). Signal enhancement techniques for rf SQUID based magnetic imaging systems. Superconductor Science and Technology, 19(8): 821-824. https://doi.org/10.1088/0953-2048/19/8/023    [Google Scholar] 
  5. Bellekom S and Sarro PM (1998). Offset reduction of Hall plates in three different crystal planes. Sensors and Actuators A-Physical, 66(1-3): 23-28. https://doi.org/10.1016/S0924-4247(97)01700-7    [Google Scholar] 
  6. Besse PA, Boero G, Demierre M, Pott V, and Popovic R (2002). Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Applied Physics Letters, 80(22): 4199-4201. https://doi.org/10.1063/1.1483909    [Google Scholar] 
  7. Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, and Chang CH (1992). Near-field magneto-optics and high density storage. Optics and Photonics News., 3(12): 24-25. https://doi.org/10.1364/OPN.3.12.000024    [Google Scholar] 
  8. Blagojevic M, Kayal M, and De Venuto D (2006a). FD SOI Hall sensor electronics interfaces for energy measurement. Microelectronics Journal, 37(12): 1576-1583. https://doi.org/10.1016/j.mejo.2006.04.015    [Google Scholar] 
  9. Blagojevic M, Kayal M, Gervais M, and De Venuto D (2006b). SOI hall-sensor front end for energy measurement. IEEE Sensors Journal, 6(4): 1016-1021. https://doi.org/10.1109/JSEN.2006.877996    [Google Scholar] 
  10. Boero G, Demierre M, and Popovic RS (2003). Micro-Hall devices: Performance, technologies and applications. Sensors and Actuators A: Physical, 106(1-3): 314-320. https://doi.org/10.1016/S0924-4247(03)00192-4    [Google Scholar] 
  11. Boero G, Utke I, Bret T, Quack N, Todorova M, Mouaziz S, and Hoffmann P (2005). Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Applied Physics Letters, 86(4): 042503. https://doi.org/10.1063/1.1856134    [Google Scholar] 
  12. Chong BK, Zhou H, Mills G, Donaldson L, and Weaver JMR (2001). Scanning Hall probe microscopy on an atomic force microscope tip. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 19(4): 1769-1772. https://doi.org/10.1116/1.1379324    [Google Scholar] 
  13. Chung GS (1993). Thin SOI structures for sensing and integrated-circuit applications. Sensors and Actuators A-Physical, 39(3): 241-251. https://doi.org/10.1016/0924-4247(93)80226-7    [Google Scholar] 
  14. Gruger H, Vogel U, and Ulbricht S (2006). Setup and capability of CMOS Hall sensor arrays. Sensors and Actuators A-Physical, 129(1-2): 100-102. https://doi.org/10.1016/j.sna.2005.11.024    [Google Scholar] 
  15. Guethner P, Fischer U, and Dransfeld K (1989). Scanning near filed acoustic microscopy. Applied Physics B, 48(1): 89-92. https://doi.org/10.1007/BF00694423    [Google Scholar] 
  16. Julian S (2014). Scanning probe microscopy from the perspective of the sensor. Ph.D. Dissertation, University of Nottingham, Nottingham, UK.    [Google Scholar]     
  17. Karci O, Piatek OJ, Jorba P, Dede M, Rønnow MH, and Oral A (2014). An ultra-low temperature scanning Hall probe microscope for magnetic imaging below 40 mK. Review of Scientific Instruments, 85(10): 103703. https://doi.org/10.1063/1.4897145    [Google Scholar]  PMid:25362399 
  18. Kejik P, Boero G, Demierre M, and Popovic RS (2006). An integrated micro-Hall probe for scanning magnetic microscopy. Sensors and Actuators A: Physical, 129(1-2): 212-215. https://doi.org/10.1016/j.sna.2005.11.061    [Google Scholar] 
  19. Kirtley JR and Wikswo JP (1999). Scanning SQUID microscopy. Annual Review of Materials Science, 29(1): 117-148. https://doi.org/10.1146/annurev.matsci.29.1.117    [Google Scholar] 
  20. Kumagai Y, Abe M, Sakamoto S, Handa H, and Sandhu A (2008). Sensitivity dependence of Hall biosensor arrays with the position of superparamagnetic beads on their active regions. Journal of Applied Physics, 103(7): 07A309. https://doi.org/10.1063/1.2833306    [Google Scholar] 
  21. Kunets VP, Black WT, Mazur YI, Guzun D, Salamo GJ, Goel N, and Santos MB (2005). Highly sensitive micro-Hall devices based on Al 0.12 In 0.88 Sb∕ In Sb heterostructures. Journal of Applied Physics, 98(1): 014506. https://doi.org/10.1063/1.1954867    [Google Scholar] 
  22. Lyu F, Zhang Z, Toh EH, Liu X, Ding Y, Pan Y, Li C, Li L, Sha J, and Pan H (2015). Performance comparison of cross like hall plates with different covering layers. Sensors, 15(1): 672-686. https://doi.org/10.3390/s150100672    [Google Scholar]  PMid:25559001 PMCid:PMC4327042 
  23. Martin Y and Wickramasinghe HK (1987). Magnetic imaging by ''force microscopy''with 1000 Å resolution. Applied Physics Letters, 50(20): 1455-1457. https://doi.org/10.1063/1.97800    [Google Scholar] 
  24. Mihajlović G, Xiong P, Monár SV, Ohtani K, Ohno H, Field M, and Sullivan GJ (2005). Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Applied Physics Letters, 87(11): 112502. https://doi.org/10.1063/1.2043238    [Google Scholar] 
  25. Oral A, Bending SJ, and Henini M (1996). Real-time scanning hall probe microscopy. Applied Physics Letters, 69(9): 1324-1326. https://doi.org/10.1063/1.117582    [Google Scholar] 
  26. Paun M, Sallese JM, and Kayal M (2013a). Temperature considerations on Hall Effect sensors current-related sensitivity behavior. Analog Integrated Circuits and Signal Processing, 77(3): 355-364. https://doi.org/10.1007/s10470-013-0188-6    [Google Scholar] 
  27. Paun MA (2016). Main parameters characterization of bulk cmos cross-like hall structures. Advances in Materials Science and Engineering, 2016: Article ID 6279162, 7 pages. https://doi.org/10.1155/2016/6279162    [Google Scholar] 
  28. Paun MA, Sallese JM, and Kayal M (2010). Geometry influence on Hall effect devices performance. UPB Science Bull, 72(4): 257-271.   [Google Scholar]    
  29. Paun MA, Sallese JM, and Kayal M (2013b). Comparative study on the performance of five different Hall effect devices. Sensors, 13(2): 2093-2112. https://doi.org/10.3390/s130202093    [Google Scholar]  PMid:23385419 PMCid:PMC3649431     
  30. Paun MA, Sallese JM, and Kayal M (2014). Evaluation of characteristic parameters for high performance hall cells. Microelectronics Journal, 45(9): 1194-1201. https://doi.org/10.1016/j.mejo.2014.04.028    [Google Scholar] 
  31. Popovic RS (2004). Hall Effect Devices. 2nd Edition, Institute of Physics Publishing, Bristol, UK. https://doi.org/10.1887/0750308559    [Google Scholar] 
  32. Sandhu A, Kurosawa K, Dede M, and Oral A (2004). 50 nm Hall sensors for room temperature scanning Hall probe microscopy. Japanese Journal of Applied Physics, 43(2R): 777-778. https://doi.org/10.1143/JJAP.43.777    [Google Scholar] 
  33. Schmidt F and Hubert A (1986). Domain observations on CoCr-layers with a digitally enhanced Kerr-microscope. Journal of magnetism and magnetic materials, 61(3): 307-320. https://doi.org/10.1016/0304-8853(86)90044-2    [Google Scholar] 
  34. Schweinböck T, Weiss D, Lipinski M, and Eberl K (2000). Scanning Hall probe microscopy with shear force distance control. Journal of Applied Physics, 87(9): 6496-6498. https://doi.org/10.1063/1.372749    [Google Scholar] 
  35. Xiao-Fen Li, Mehdi K, Goran M, and Venkat S (2016). Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope. Superconductor Science, and Technology, 29(8): 085014. https://doi.org/10.1088/0953-2048/29/8/085014    [Google Scholar] 
  36. Xu Y and Pan H. B (2011). An improved equivalent simulation model for CMOS integrated Hall Plates. Sensors, 11(6): 6284-6296. https://doi.org/10.3390/s110606284    [Google Scholar]  PMid:22163955 PMCid:PMC3231436     
  37. Yamamura T, Nakamura D, Higashiwaki M, Matsui T, and Sandhu A (2006). High sensitivity and quantitative magnetic field measurements at 600 C. Journal of Applied Physics, 99(8): 08B302. https://doi.org/10.1063/1.2158693    [Google Scholar]