International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 5 (May 2018), Pages: 61-70

----------------------------------------------

 Original Research Paper

 Title: Combining lime softening with alum coagulation for hard Ghrib dam water conventional treatment

 Author(s): Djamel Ghernaout 1, 2, *, Abderrahmane Simoussa 3, Abdulaziz Alghamdi 4, Badia Ghernaout 5, Noureddine Elboughdiri 1, Ammar Mahjoubi 1, Mohamed Aichouni 6, Abd El-Aziz El-Wakil 1, 7

 Affiliation(s):

 1Chemical Engineering Department, College of Engineering, University of Ha’il, PO Box 2440, Ha’il 81441, Saudi Arabia
 2Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria
 3Algerian Waters Company (ADE), Medea Area, Medea 26000, Algeria
 4Mechanical Engineering Department, College of Engineering, University of Ha’il, PO Box 2440, Ha’il 81441, Saudi Arabia
 5Laboratory of Mechanics (LME), Department of Mechanical Engineering, University of Laghouat, PO Box 37G, Laghouat 03000, Algeria
 6Industrial Engineering Department, College of Engineering, University of Ha’il, PO Box 2440, Ha’il 81441, Saudi Arabia
 7National Institute of Standards, Teresa Street, El-Haram, PO Box 136, Giza 12211, Egypt

 https://doi.org/10.21833/ijaas.2018.05.008

 Full Text - PDF          XML

 Abstract:

This work aims to control the efficiency of water softening as an inherent phenomenon in the coagulation process or, in other words, to evaluate the softening process as a secondary reaction which is producing simultaneously with the main reaction as the coagulation process. Ghrib Dam water is well-known for its high hardness ranging from 750 to 900 mg/L as CaCO3. That is, this water is unpleasant to the domestic consumption. Conventional water treatment at the Ghrib Station is based on coagulation using aluminum sulfate [Al2 (SO4)3.18H2O] (alum) as a single coagulant. Alum has a minimal effect on the total hardness and its human toxicity is not yet doubtful. This research introduces the concept of the replacement of alum by lime and sodium hydroxide (NaOH) in coagulation process at the Ghrib Station. Coagulation experiments on jar test using the three reagents (alum, lime, and NaOH) are performed and physicochemical analyses are conducted to evaluate the possibility of alum partial or total replacement for improving the treatment effectiveness in hardness reducing. The obtained results show that hardness is decreased at its half by combining simultaneously the three chemical products: alum = 15, lime = 100, NaOH = 100 mg/L. Additional survey is required to examine the complicated interaction in the Ca2+/Mg2+-DOM-Al ternary system to comprehensively define the contributions of the two mechanisms – lime softening and coagulation - to organic matter removal by coagulation. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Coagulation, Chemical precipitation, Hardness removal, Alum, Lime, Sodium hydroxide

 Article History: Received 23 November 2017, Received in revised form 1 March 2018, Accepted 4 March 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.05.008

 Citation:

 Ghernaout D, Simoussa A, and Alghamdi A et al. (2018). Combining lime softening with alum coagulation for hard Ghrib dam water conventional treatment. International Journal of Advanced and Applied Sciences, 5(5): 61-70

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I5/Ghernaout.html

----------------------------------------------

 References (52) 

  1. Abdessemed D and Nezzal G (2008). Coupling softening—ultrafiltration like pretreatment of sea water case study of the Corso plant desalination (Algiers). Desalination, 221(1-3): 107-113. https://doi.org/10.1016/j.desal.2007.01.072   [Google Scholar] 
  2. Anim-Mensah AR, Krantz WB, and Govind R (2008). Studies on polymeric nanofiltration-based water softening and the effect of anion properties on the softening process. European Polymer Journal, 44(7): 2244-2252. https://doi.org/10.1016/j.eurpolymj.2008.04.036   [Google Scholar] 
  3. Arrigo I, Catalfamo P, Cavallari L, and Di Pasquale S (2007). Use of zeolitized pumice waste as a water softening agent. Journal of Hazardous Materials, 147(1-2): 513-517. https://doi.org/10.1016/j.jhazmat.2007.01.061   [Google Scholar]  PMid:17320286 
  4. Becaria A, Lahiri DK, Bondy SC, Chen D, Hamadeh A, Li H, and Campbell A (2006). Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain. Journal of Neuroimmunology, 176(1): 16-23. https://doi.org/10.1016/j.jneuroim.2006.03.025   [Google Scholar]  PMid:16697052     
  5. Boucherit A, Moulay S, Ghernaout D, Al-Ghonamy AI, Ghernaout B, Naceur MW, and Elboughdiri NA (2015). New trends in disinfection by-products formation upon water treatment. Journal of Research and Developments in Chemistry, 2015: 1-27. https://doi.org/10.5171/2015.628833   [Google Scholar] 
  6. Brastad KS and He Z (2013). Water softening using microbial desalination cell technology. Desalination, 309: 32-37. https://doi.org/10.1016/j.desal.2012.09.015   [Google Scholar] 
  7. Cheng H, Zhang Y, Wang X, Cheng F, Han J, Zhao J, and Sun Y (2017). Theoretical and experimental investigation of time-varying properties in the coagulation of kaolinite containing wastewater by gypsum. Journal of the Taiwan Institute of Chemical Engineers, 71: 253-259. https://doi.org/10.1016/j.jtice.2016.12.021   [Google Scholar] 
  8. Cheng HH, Chen SS, and Yang SR (2009). In-line coagulation/ultrafiltration for silica removal from brackish water as RO membrane pretreatment. Separation and Purification Technology, 70(1): 112-117. https://doi.org/10.1016/j.seppur.2009.09.001   [Google Scholar] 
  9. Comstock SE, Boyer TH, and Graf KC (2011). Treatment of nanofiltration and reverse osmosis concentrates: Comparison of precipitative softening, coagulation, and anion exchange. Water Research, 45(16): 4855-4865. https://doi.org/10.1016/j.watres.2011.06.035   [Google Scholar]  PMid:21774956 
  10. Coro E and Laha S (2001). Color removal in groundwater through the enhanced softening process. Water Research, 35(7): 1851-1854. https://doi.org/10.1016/S0043-1354(00)00440-1   [Google Scholar] 
  11. Esmaeilirad N, Carlson K, and Ozbek PO (2015). Influence of softening sequencing on electrocoagulation treatment of produced water. Journal of Hazardous Materials, 283: 721-729. https://doi.org/10.1016/j.jhazmat.2014.10.046   [Google Scholar]  PMid:25464315 
  12. Fang W, Shi L, and Wang R (2013). Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. Journal of Membrane Science, 430: 129-139. https://doi.org/10.1016/j.memsci.2012.12.011   [Google Scholar] 
  13. Flaten TP (2001). Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Research Bulletin, 55(2): 187-196.   [Google Scholar] 
  14. Gabrielli C, Maurin G, Francy-Chausson H, Thery P, Tran TTM, and Tlili M (2006). Electrochemical water softening: Principle and application. Desalination, 201(1-3): 150-163. https://doi.org/10.1016/j.desal.2006.02.012   [Google Scholar] 
  15. Ghernaout B, Ghernaout D, and Saiba A (2010). Algae and cyanotoxins removal by coagulation/flocculation: A review. Desalination and Water Treatment, 20(1-3): 133-143. https://doi.org/10.5004/dwt.2010.1202   [Google Scholar] 
  16. Ghernaout D (2013). The best available technology of water/wastewater treatment and seawater desalination: Simulation of the open sky seawater distillation. Green and Sustainable Chemistry, 3(02): 68-88. https://doi.org/10.4236/gsc.2013.32012   [Google Scholar] 
  17. Ghernaout D (2014). The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation: A review. Journal of King Saud University-Science, 26(3): 169-180. https://doi.org/10.1016/j.jksus.2013.09.005   [Google Scholar] 
  18. Ghernaout D (2017a). Water reuse (WR): The ultimate and vital solution for water supply issues. International Journal of Sustainable Development Research, 3(4): 36-46.   [Google Scholar]     
  19. Ghernaout D (2017b). Water treatment chlorination: An updated mechanistic insight review. Chemical Research Journal, 2: 125-138.   [Google Scholar]     
  20. Ghernaout D and Boucherit A (2015). Review of coagulation's rapid mixing for NOM removal. Journal of Research and Developments in Chemistry, 2015: 1-32. https://doi.org/10.5171/2015.926518   [Google Scholar] 
  21. Ghernaout D and Ghernaout B (2010). From chemical disinfection to electrodisinfection: The obligatory itinerary?. Desalination and Water Treatment, 16(1-3): 156-175. https://doi.org/10.5004/dwt.2010.1085   [Google Scholar] 
  22. Ghernaout D and Ghernaout B (2012). On the concept of the future drinking water treatment plant: algae harvesting from the algal biomass for biodiesel production: A review. Desalination and Water Treatment, 49(1-3): 1-18. https://doi.org/10.1080/19443994.2012.708191   [Google Scholar] 
  23. Ghernaout D and Ghernaout B (2012). Sweep flocculation as a second form of charge neutralisation: A review. Desalination and Water Treatment, 44(1-3): 15-28. https://doi.org/10.1080/19443994.2012.691699   [Google Scholar] 
  24. Ghernaout D and Naceur MW (2011). Ferrate (VI): In situ generation and water treatment: A review. Desalination and Water Treatment, 30(1-3): 319-332. https://doi.org/10.5004/dwt.2011.2217   [Google Scholar] 
  25. Ghernaout D, Al-Ghonamy AI, Boucherit A, Ghernaout B, Naceur MW, Messaoudene NA, and Elboughdiri NA (2015a). Brownian motion and coagulation process. American Journal of Environmental Protection, 4(5-1): 1-15.   [Google Scholar]     
  26. Ghernaout D, Al-Ghonamy AI, Naceur MW, Boucherit A, Messaoudene NA, Aichouni M, and Elboughdiri NA (2015b). Controlling coagulation process: From zeta potential to streaming potential. American Journal of Environmental Protection, 4(5-1): 16-27.   [Google Scholar]     
  27. Ghernaout D, Badis A, Braikia G, Matâam N, Fekhar M, Ghernaout B, and Boucherit A (2017). Enhanced coagulation for algae removal in a typical algeria water treatment plant. Environmental Engineering and Management Journal (EEMJ), 16(10): 2303-2315.   [Google Scholar]     
  28. Ghernaout D, Ghernaout B, and Kellil A (2009). Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalination and Water Treatment, 2(1-3): 203-222. https://doi.org/10.5004/dwt.2009.116   [Google Scholar] 
  29. Ghernaout D, Ghernaout B, and Naceur MW (2011). Embodying the chemical water treatment in the green chemistry: A review. Desalination, 271(1-3): 1-10. https://doi.org/10.1016/j.desal.2011.01.032   [Google Scholar] 
  30. Ghernaout D, Moulay S, Messaoudene NA, Aichouni M, Naceur MW, and Boucherit A (2014). Coagulation and chlorination of NOM and algae in water treatment: A review. Journal of Environmental Monitoring and Analysis, 2(6-1): 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14   [Google Scholar] 
  31. Ghizellaoui S, Chibani A, and Ghizellaoui S (2005). Use of nanofiltration for partial softening of very hard water. Desalination, 179(1-3): 315-322. https://doi.org/10.1016/j.desal.2004.11.077   [Google Scholar] 
  32. Godskesen B, Hauschild M, Rygaard M, Zambrano K, and Albrechtsen HJ (2012). Life cycle assessment of central softening of very hard drinking water. Journal of Environmental Management, 105: 83-89. https://doi.org/10.1016/j.jenvman.2012.03.030   [Google Scholar]  PMid:22534192 
  33. Kweon JH and Lawler DF (2004). Fouling mechanisms in the integrated system with softening and ultrafiltration. Water Research, 38(19): 4164-4172. https://doi.org/10.1016/j.watres.2004.06.013   [Google Scholar]  PMid:15491664 
  34. Lee HJ, Song JH, and Moon SH (2013). Comparison of electrodialysis reversal (EDR) and electrodeionization reversal (EDIR) for water softening. Desalination, 314: 43-49. https://doi.org/10.1016/j.desal.2012.12.028   [Google Scholar] 
  35. Lee S and Lee CH (2000). Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 34(15): 3854-3866. https://doi.org/10.1016/S0043-1354(00)00142-1   [Google Scholar] 
  36. Liao MY and Randtke SJ (1986). Predicting the removal of soluble organic contaminants by lime softening. Water Research, 20(1): 27-35. https://doi.org/10.1016/0043-1354(86)90210-1   [Google Scholar] 
  37. Nanda D, Tung KL, Li YL, Lin NJ, and Chuang CJ (2010). Effect of pH on membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening. Journal of Membrane Science, 349(1-2): 411-420. https://doi.org/10.1016/j.memsci.2009.12.004   [Google Scholar] 
  38. Nason JA and Lawler DF (2009). Particle size distribution dynamics during precipitative softening: Declining solution composition. Water Research, 43(2): 303-312. https://doi.org/10.1016/j.watres.2008.10.017   [Google Scholar]  PMid:18976791 
  39. O'Donnell AJ, Lytle DA, Harmon S, Vu K, Chait H, and Dionysiou DD (2016). Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies. Water Research, 103: 319-333. https://doi.org/10.1016/j.watres.2016.06.036   [Google Scholar]  PMid:27475121     
  40. Ordó-ez R, Moral A, Hermosilla D, and Blanco Á (2012). Combining coagulation, softening and flocculation to dispose reverse osmosis retentates. Journal of Industrial and Engineering Chemistry, 18(3): 926-933. https://doi.org/10.1016/j.jiec.2011.08.004   [Google Scholar] 
  41. Rodier J (2009). L'analyse de l'eau. 9th Edition, Dunod, Paris, French.  
  42. Sivasankar V and Ramachandramoorthy T (2011). Water softening behaviour of sand materials: Mimicking natural zeolites in some locations of Rameswaram Island, India. Chemical Engineering Journal, 171(1): 24-32. https://doi.org/10.1016/j.cej.2011.03.032   [Google Scholar] 
  43. Vahedi A and Gorczyca B (2011). Application of fractal dimensions to study the structure of flocs formed in lime softening process. Water Research, 45(2): 545-556. https://doi.org/10.1016/j.watres.2010.09.014   [Google Scholar]  PMid:20937512 
  44. Vahedi A and Gorczyca B (2014). Settling velocities of multifractal flocs formed in chemical coagulation process. Water Research, 53: 322-328. https://doi.org/10.1016/j.watres.2014.01.008   [Google Scholar]   PMid:24530551    
  45. Van der Bruggen B, Goossens H, Everard PA, Stemgee K, and Rogge W (2009). Cost-benefit analysis of central softening for production of drinking water. Journal of Environmental Management, 91(2): 541-549. https://doi.org/10.1016/j.jenvman.2009.09.024   [Google Scholar]  PMid:19837505 
  46. Walton JR (2007). A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neuroscience Letters, 412(1): 29-33. https://doi.org/10.1016/j.neulet.2006.08.093   [Google Scholar]  PMid:17156917     
  47. Wang LK, Wu JS, Shammas NK, and Vaccari DA (2005). Recarbonation and softening. In: Wang LK, Hung YT, and Shammas NK (Eds.), Physicochemical Treatment Processes: 199-228. Humana Press, New York, USA. https://doi.org/10.1385/1-59259-820-x:199   
  48. Wesolowska K, Koter S, and Bodzek M (2004). Modelling of nanofiltration in softening water. Desalination, 162: 137-151. https://doi.org/10.1016/S0011-9164(04)00037-2   [Google Scholar] 
  49. Yan M, Wang D, Ni J, Qu J, Ni W, and Van Leeuwen J (2009). Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: Targets and techniques. Separation and Purification Technology, 68(3): 320-327. https://doi.org/10.1016/j.seppur.2009.05.021   [Google Scholar] 
  50. Yan M, Wang D, Ni J, Qu J, Yan Y, and Chow CW (2008). Effect of polyaluminum chloride on enhanced softening for the typical organic-polluted high hardness North-China surface waters. Separation and Purification Technology, 62(2): 401-406. https://doi.org/10.1016/j.seppur.2008.02.014   [Google Scholar] 
  51. Yildiz E, Nuhoglu A, Keskinler B, Akay G, and Farizoglu B (2003). Water softening in a crossflow membrane reactor. Desalination, 159(2): 139-152. https://doi.org/10.1016/S0011-9164(03)90066-X   [Google Scholar] 
  52. Zhou Y, Yan M, Liu R, Wang D, and Qu J (2017). Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through Al(III)-dissolved organic matter (DOM) binding. Water Research, 115: 22-28. https://doi.org/10.1016/j.watres.2017.02.041   [Google Scholar]  PMid:28259076