International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 5 (May 2018), Pages: 107-109

----------------------------------------------

 Original Research Paper

 Title: K Banhatti and K hyper Banhatti indices of circulant graphs

 Author(s): Adnan Asghar 1, *, Muhammad Rafaqat 2, Waqas Nazeer 3, Wei Gao 4

 Affiliation(s):

 1Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
 2Center of Mathematics and Applications, University of Lahore, Lahore, Pakistan
 3Division of Science and Technology, University of Education, Lahore, Pakistan
 4School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

 https://doi.org/10.21833/ijaas.2018.05.014

 Full Text - PDF          XML

 Abstract:

A topological index is a numerical number associated with a graph that describes its topology. History traces a long path on the study of topological indices. A circulant graph is one of the most comprehensive families, as its specializations give some important families like complete graphs, crown graphs, rook graphs, complete bipartite graphs, cocktail party graphs, empty graphs, etc. The aim of this report is to compute the first and second K Banhatti indices of circulant graph. We also compute the first and second K hyper Banhatti indices of this family of graph. Moreover, we plot our results to see the dependences of the first and second K Banhatti indices and the first and second K hyper Banhatti indices on the involved parameters. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Circulant graph, Topological index, Banhatti index

 Article History: Received 23 November 2017, Received in revised form 8 March 2018, Accepted 13 March 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.05.014

 Citation:

 Asghar A, Rafaqat M, Nazeer W, and Gao W (2018). K Banhatti and K hyper Banhatti indices of circulant graphs. International Journal of Advanced and Applied Sciences, 5(5): 107-109

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I5/Asghar.html

----------------------------------------------

 References (20) 

  1. Boesch, F and Tindell R (1984). Circulants and their connectivities. Journal of Graph Theory, 8(4): 487-499. https://doi.org/10.1002/jgt.3190080406    [Google Scholar] 
  2. Bollobás B and Erdös P (1998). Graphs of extremal weights. Ars Combinatoria, 50(9): 225-233.    [Google Scholar]     
  3. Dobrynin AA, Entringer R, and Gutman I (2001). Wiener index of trees: Theory and applications. Acta Applicandae Mathematicae, 66(3): 211-249. https://doi.org/10.1023/A:1010767517079    [Google Scholar]
  4. Gutman I and Polansky OE (2012). Mathematical concepts in organic chemistry. Springer Science and Business Media, Berlin, Germany.    [Google Scholar]     
  5. Habibi N and Ashrafi AR (2014). On revised szeged spectrum of a graph. Tamkang Journal of Mathematics, 45(4): 375-387. https://doi.org/10.5556/j.tkjm.45.2014.1463    [Google Scholar]
  6. Hu Y, Li X, Shi Y, Xu T, and Gutman I (2005). On molecular graphs with smallest and greatest zeroth-order general Randic index. MATCH Communications in Mathematical and in Computer Chemistry, 54(2): 425-434.    [Google Scholar]     
  7. Kang SM, Nazeer S, Kousar I, Nazeer W, and Kwun YC (2016). Multi-level and antipodal labelings for certain classes of circulant graphs. Journal of Nonlinear Science Applhcation, 9: 2832-2845. https://doi.org/10.22436/jnsa.009.05.78    [Google Scholar] 
  8. Klavžar S and Gutman I (1996). A comparison of the Schultz molecular topological index with the Wiener index. Journal of Chemical Information and Computer Sciences, 36(5): 1001-1003. https://doi.org/10.1021/ci9603689    [Google Scholar] 
  9. Kulli VR, Chaluvaraju B, and Boregowda HS (2017). Connectivity Banhatti indices for certain families of benzenoid systems. Journal of Ultra Chemistry, 13(4): 81-87. https://doi.org/10.22147/juc/130402    [Google Scholar] 
  10. Munir M, Nazeer W, Shahzadi Z, and Kang SM (2016). Some invariants of circulant graphs. Symmetry, 8(11): 134-142. https://doi.org/10.3390/sym8110134    [Google Scholar] 
  11. Nazeer S, Kousar I, and Nazeer W (2015). Radio and radio antipodal labelings for circulant graphs G (4k+ 2; 1; 2). Journal of Applied Mathematics and Information Sciences, 33(1-2): 173-183. https://doi.org/10.14317/jami.2015.173    [Google Scholar] 
  12. Randic M (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23): 6609-6615. https://doi.org/10.1021/ja00856a001    [Google Scholar] 
  13. Rehman HMu, Sardar R, Raza A (2017). Computing topological indices of hex board and its line graph. Open Journal of Mathematics Sciences, 1(1): 62-71. https://doi.org/10.30538/oms2017.0007    [Google Scholar] 
  14. Rücker G and Rücker C (1999). On topological indices, boiling points, and cycloalkanes. Journal of Chemical Information and Computer Sciences, 39(5): 788-802. https://doi.org/10.1021/ci9900175    [Google Scholar] 
  15. Sardar MS, Zafar S, and Farahani MR (2017). The generalized zagreb index of capra-designed planar benzenoid series Cak(C6). Open Journal of Mathematics Sciences, 1(1): 44-51. https://doi.org/10.30538/oms2017.0005    [Google Scholar] 
  16. Voigt M and Walther H (1991). On the chromatic number of special distance graphs. Discrete mathematics, 97(1-3): 395-397. https://doi.org/10.1016/0012-365X(91)90454-A    [Google Scholar] 
  17. West DB (2001). Introduction to graph theory (Vol. 2). Prentice Hall, Upper Saddle River, USA.    [Google Scholar]     
  18. Wiener H (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1): 17-20. https://doi.org/10.1021/ja01193a005    [Google Scholar]  PMid:20291038 
  19. Xueliang F, Yuansheng Y, and Baoqi J (2011). On the domination number of the circulant graphs C (n;{1, 2}), C (n;{1, 3}) and C (n;{1, 4}). Ars Combinatoria, 102: 173-182.    [Google Scholar]     
  20. Zhou H (2014). The wiener index of circulant graphs. Journal of Chemistry, 2014: Article ID 742121, 4 pages. https://doi.org/10.1155/2014/742121    [Google Scholar]