International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 5 (May 2018), Pages: 79-81

----------------------------------------------

 Original Research Paper

 Title: The commutativity of prime rings with homoderivations

 Author(s): E. F. Alharfie 1, *, N. M. Muthana 2

 Affiliation(s):

 1Department of Mathematics, Tabuk University, Tabuk, Saudi Arabia
 2Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

 https://doi.org/10.21833/ijaas.2018.05.010

 Full Text - PDF          XML

 Abstract:

Let R be a ring with center Z(R), and I be a nonzero left ideal. An additive mapping h:R→R is called a homoderivation on R if for all h(xy)=h(x)h(y)+h(x)y+xh(y)for all x.y ∈R. In this paper, we prove the commutativity of R if any of the following conditions is satisfied for all   x.y ∈R: (i)  xh(y)±xy∈Z(R).(ii)     xh(y)±yx∈Z(R).(iii)     xh(y)±[x.y]∈Z(R)     (iv)[x.y]∈Z(R)(v)[h(x)y]±xy Z(R)and (vi)    [h(x).y]±yx∈Z(R). This result is in the sprite of the well-known theorem of the commutativity of prime and semiprime rings with derivations satisfying certain polynomial constraints. Also, we prove that the commutativity of prime ring on R, if R admits a nonzero homoderivation h such that h([x.y])=±[x.y] for all x.y in a nonzero left ideal. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Prime ring, Homoderivation, Commutativity theorems

 Article History: Received 4 November 2017, Received in revised form 19 February 2018, Accepted 12 March 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.05.010

 Citation:

 Alharfie EF and Muthana NM (2018). The commutativity of prime rings with homoderivations. International Journal of Advanced and Applied Sciences, 5(5): 79-81

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I5/Alharfie.html

----------------------------------------------

 References (6) 

  1. Ashraf M and Rehman NU (2002). On commutativity of rings with derivations. Results in Mathematics, 42(1-2): 3-8. https://doi.org/10.1007/BF03323547   [Google Scholar] 
  2. Bresar M (1993). Centralizing mappings and derivations in prime rings. Journal of Algebra, 156(2): 385-394. https://doi.org/10.1006/jabr.1993.1080   [Google Scholar] 
  3. Daif MN and Bell HE (1992). Remarks on derivations on semiprime rings. International Journal of Mathematics and Mathematical Sciences, 15(1): 205-206. https://doi.org/10.1155/S0161171292000255   [Google Scholar] 
  4. El Sofy MM (2000). Rings with some kinds of mappings. M.Sc. Thesis, Cairo University, Branch of Fayoum, Cairo, Egypt.    
  5. Herstein IN (1969). Topics in ring theory. The University of Chicago Press, Chicago, USA.   [Google Scholar]     
  6. Mayne JH (1984). Centralizing mappings of prime rings. Canadian Mathematical Bulletin, 27(1): 122-126. https://doi.org/10.4153/CMB-1984-018-2   [Google Scholar]