International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 4 (April 2018), Pages: 24-29

----------------------------------------------

 Original Research Paper

 Title: Biomaterials and scaffolds in the medical-surgical area

 Author(s): Alan Isaac Valderrama-Treviño 1, *, Juan José Granados-Romero 2, Jesús Carlos Ceballos-Villalva 3, Baltazar Barrera-Mera 4, Andrés Eliú Castell-Rodríguez 1, Eduardo E. Montalvo-Javé 5

 Affiliation(s):

 1Facultad de Medicina, Laboratorio de Inmunoterapia Experimental e Ingeniería de Tejidos, UNAM, Ciudad de México, México
 2Servicio de Cirugía General, Hospital General de México, Ciudad de México, México
 3Facultad de Medicina, AFINES, UNAM, Ciudad de México, México
 4Facultad de Medicina, Departamento de Fisiología, UNAM, Ciudad de México, México
 5Servicio de Cirugía General y Hepato-Pancreato-Biliar, Hospital General de México, Ciudad de México, México

 https://doi.org/10.21833/ijaas.2018.04.004

 Full Text - PDF          XML

 Abstract:

The use of biomaterials in medicine can change the direction of research in tissue engineering; the goal is the self-repair of the organism with the help of scaffolds that may have growth factors or bioactive molecules. The objective of this review was to provide a general overview on the use of biomaterials such as hydrogels, biopolymers, nanofibers, nanoparticles, flat and tubular scaffolds, bioprostheses, for the experimental replacement of different tissues such as; liver, kidney, cornea, skin, blood vessels, urethra, trachea, bile duct, bone and cartilage. Currently, there is intense work and scientific collaboration to achieve the manufacture of various tissues and organs in tissue engineering, perhaps the use of biomaterials can provide a therapeutic alternative for the treatment of multiple pathologies. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Regenerative medicine, Biomaterial, Scaffolding, Experimental surgery, Tissue engineering

 Article History: Received 19 October 2017, Received in revised form 23 January 2018, Accepted 28 January 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.04.004

 Citation:

 Valderrama-Treviño AI, Granados-Romero JJ, Ceballos-Villalva JC et al. (2018). Biomaterials and scaffolds in the medical-surgical area. International Journal of Advanced and Applied Sciences, 5(4): 24-29

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I4/Valderrama.html

----------------------------------------------

 References (25)

  1. Ahmed M, da Silva Ramos TA, Damanik F, Le BQ, Wieringa P, Bennink M, and Moroni L (2015). A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Scientific Reports, 5: 14804. https://doi.org/10.1038/srep14804   [Google Scholar]  PMid:26445026 PMCid:PMC4595832 
  2. Allhenn D, Boushehri MAS, and Lamprecht A (2012). Drug delivery strategies for the treatment of malignant gliomas. International Journal of Pharmaceutics, 436(1): 299-310.   [Google Scholar]     
  3. Armentano I, Dottori M, Fortunati E, Mattioli S, and Kenny JM (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 95(11): 2126-2146.   [Google Scholar]     
  4. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, and Soker S (2011). The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 53(2): 604-617.   [Google Scholar]       
  5. Benoit DS, Schwartz MP, Durney AR, and Anseth KS (2008). Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Materials, 7(10): 816-823.   [Google Scholar]     
  6. Butko A, Bonat Celli G, Paulson A, and Ghanem A (2016). Entrapment of basic fibroblast growth factor (bFGF) in a succinylated chitosan nanoparticle delivery system and release profile. Journal of Biomaterials Science, Polymer Edition, 27(10): 1045-1057.   [Google Scholar]     
  7. Curran JM, Chen R, and Hunt JA (2005). Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials, 26(34): 7057-7067.   [Google Scholar]     
  8. Damanik FF, Rothuizen TC, Van Blitterswijk C, Rotmans JI, and Moroni L (2014). Towards an in vitro model mimicking the foreign body response: Tailoring the surface properties of biomaterials to modulate extracellular matrix. Scientific Reports, 4: 6325. https://doi.org/10.1038%2Fsrep06325   [Google Scholar] 
  9. DelNero P and Fischbach C (2016). Engineered tumours: Roll-on scaffolds. Nature Materials, 15(2): 138-139.   [Google Scholar]     
  10. Dong W, Hou L, Li T, Gong Z, Huang H, Wang G, and Li X (2015). A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: Mechanical hardener and surface activity regulator. Scientific Reports, 5: 18266. https://doi.org/10.1038/srep18266   [Google Scholar] 
  11. Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, and Swihart MT (2008). Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano, 2(5): 873-878.   [Google Scholar]     
  12. Harari‐Steinberg O, Metsuyanim S, Omer D, Gnatek Y, Gershon R, Pri‐Chen S, and Vaknin Z (2013). Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Molecular Medicine, 5(10): 1556-1568.   [Google Scholar]     
  13. López T, Ortiz-Islas E, Guevara P, and Gomez E (2013). Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell. International Journal of Nanomedicine, 8: 581–592.   [Google Scholar]     
  14. Montalvo-Javé EE, Barrera GEM, Trevi-o AIV, Barba MCP, Montalvo-Arenas C, Mendoza FR, and Tapia-Jurado J (2015). Absorbable bioprosthesis for the treatment of bile duct injury in an experimental model. International Journal of Surgery, 20: 163-169.   [Google Scholar]     
  15. Ning L, Xu Y, Chen X, and Schreyer DJ (2016). Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Journal of Biomaterials Science, Polymer Edition, 27(9): 898-915.   [Google Scholar]     
  16. Oostendorp C, Uijtdewilligen PJ, Versteeg EM, Hafmans TG, Van Den Bogaard EH, De Jonge PK, and Van Kuppevelt TH (2016). Visualisation of newly synthesised collagen in vitro and in vivo. Scientific Reports, 6: 18780.  https://doi.org/10.1038/srep18780   [Google Scholar]  PMid:26738984 PMCid:PMC4704054     
  17. Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, and Soker S (2015). Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Research and Therapy, 6(1): 107-119.   [Google Scholar]     
  18. Pérez AJA, del Olmo Rivas C, Romero IM, Cabrera B. P, Garcia FJC, and Poyatos PT (2013). Bile duct reconstruction using 3-dimensional collagen tubes. Cirugía Espa-ola (English Edition), 91(9): 590-594. https://doi.org/10.1016/j.cireng.2013.12.011   [Google Scholar]  
  19. Premnath P, Tan B, and Venkatakrishnan K (2015). Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer. Scientific Reports, 5: 12141. https://doi.org/10.1038/srep12141   [Google Scholar]  PMid:26190009 PMCid:PMC4507261     
  20. Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676. https://doi.org/10.1016/j.cell.2006.07.024   [Google Scholar] 
  21. Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, and Fang B (2016). Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Scientific Reports, 6: 22005. https://doi.org/10.1038/srep22005   [Google Scholar]  
  22. Xiao L, Gu L, Howell SB, and Sailor MJ (2011). Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano, 5(5): 3651-3659.   [Google Scholar] 
  23. Zambon JP, Magalhaes RS, Ko I, Ross CL, Orlando G, Peloso A, and Yoo JJ (2014). Kidney regeneration: Where we are and future perspectives. World Journal of Nephrology, 3(3): 24-30.   [Google Scholar]     
  24. Zhang J, Zhang CW, Du LQ, and Wu XY (2016a). Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro. International Journal of Ophthalmology, 9(1): 1-8.   [Google Scholar]     
  25. Zhang X, Zeng D, Li N, Wen J, Jiang X, Liu C, and Li Y (2016b). Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Scientific Reports, 6: 19361. https://doi.org/10.1038/srep19361   [Google Scholar]