International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 4 (April 2018), Pages: 109-114

----------------------------------------------

 Original Research Paper

 Title: A new transformation technique to find the analytical solution of general second order linear ordinary differential equation

 Author(s): Zulfiqar Ahmed 1, 2, *, Muhammad Kalim 2

 Affiliation(s):

 1Department of Computer Science, GIFT University, Gujranwala, Pakistan
 2Department of Mathematics, National College of Business Administration and Economics, Lahore, Pakistan

 https://doi.org/10.21833/ijaas.2018.04.014

 Full Text - PDF          XML

 Abstract:

The purpose of this paper is to introduce a new analytical approach towards the general solution of ordinary linear differential equations (OLDEs) of order two. The method involves a transformation based on integral function in an exponential form which leads to the general solution of given differential equation. A special case of second order OLDEs has been discussed to develop the formulae and solution procedure and different problems have been solved to explain the solution method. Finally, the idea has been extended to solve the general form of second order OLDEs. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Ordinary differential equations, Analytical solution, Transformations

 Article History: Received 17 November 2017, Received in revised form 16 February 2018, Accepted 25 February 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.04.014

 Citation:

 Ahmed Z and Kalim M (2018). A new transformation technique to find the analytical solution of general second order linear ordinary differential equation. International Journal of Advanced and Applied Sciences, 5(4): 109-114

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I4/Ahmed.html

----------------------------------------------

 References (32)  

  1. Ahmeid M, Armstrong M, Gadoue S, Al-Greer M, and Missailidis P (2017). Real-Time parameter estimation of DC–DC converters using a self-tuned kalman filter. IEEE Transactions on Power Electronics, 32(7): 5666-5674. https://doi.org/10.1109/TPEL.2016.2606417   [Google Scholar] 
  2. Al Bastami A, Belić MR and Petrović NZ (2010). Special solutions of the riccati equation with applications to the Gross-Pitaevskii nonlinear PDE. Electronic Journal of Differential Equations (EJDE)[electronic only], 2010(66): 1-10.   [Google Scholar] 
  3. Batiha B (2015). A new efficient method for solving quadratic Riccati differential equation. International Journal of Applied Mathematics Research, 4(1): 24-29. https://doi.org/10.14419/ijamr.v4i1.4113   [Google Scholar] 
  4. Belgacem FBM (2006). Introducing and analyzing deeper Sumudu properties. Nonlinear Studies, 13(1): 23-41.   [Google Scholar] 
  5. Belgacem FBM (2010). Sumudu transform applications to Bessel functions and equations. Applied Mathematical Sciences, 4(74): 3665-3686.   [Google Scholar] 
  6. Belgacem FBM and Karaballi AA (2006). Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis, 2006: Article ID 91083, 23 pages. https://doi.org/10.1155/JAMSA/2006/91083   [Google Scholar] 
  7. Belgacem FBM and Silambarasan R (2012). Maxwell's equations solutions by means of the natural transform. International Journal of Mathematics in Engineering, Science and Aeorospace, 3(3): 313-323.   [Google Scholar] 
  8. Belgacem FBM and Silambarasan R (2013). Laplace transform analytical restructure. Applied Mathematics, 4(06): 919-932. https://doi.org/10.4236/am.2013.46128   [Google Scholar] 
  9. Belgacem FBM and Silambarasan R (2017). A distinctive Sumudu treatment of trigonometric functions. Journal of Computational and Applied Mathematics, 312: 74-81. https://doi.org/10.1016/j.cam.2015.12.036   [Google Scholar] 
  10. Belgacem FBM, Karaballi AA, and Kalla SL (2003). Analytical investigations of the Sumudu transform and applications to integral production equations. Mathematical Problems in Engineering, 2003(3): 103-118. https://doi.org/10.1155/S1024123X03207018   [Google Scholar] 
  11. Busawon K and Johnson P (2005). Solution of a class of riccati equations. In the 8th WSEAS International Conference on Applied Mathematics, Tenerife, Spain: 334-338.   [Google Scholar] 
  12. Cai X, Ding YS, and Li SY (2017). Convergent properties of riccati equation with application to stability analysis of state estimation. Mathematical Problems in Engineering, 2017: Article ID 2367042, 7 pages. https://doi.org/10.1155/2017/2367042   [Google Scholar] 
  13. Dehghannasiri R, Esfahani MS, and Dougherty ER (2017). Intrinsically bayesian robust kalman filter: An innovation process approach. IEEE Transactions on Signal Processing, 65(10): 2531-2546. https://doi.org/10.1109/TSP.2017.2656845   [Google Scholar] 
  14. Fraga S, García de la Vega JM, and Fraga ES (1999). The schrodinger and riccati equations (Vol. 70). Springer-Verlag, Berlin, Germany. https://doi.org/10.1007/978-3-642-51458-6   [Google Scholar] 
  15. Geisbauer J (2007). Reducibility of second order differential operators with rational coefficients. Rose-Hulman Undergraduate Mathematics Journal, 8(2): 1-22.   [Google Scholar] 
  16. Hasan YQ (2012). Solving first-order ordinary differential equations by Modified Adomian decomposition method. Advances in Intelligent Transportation Systems, 1(4): 86-89.   [Google Scholar] 
  17. Hussain MG and Belgacern FBMM (2007). Transient solutions of Maxwell's equations based on Sumudu transform. Progress in Electromagnetics Research, 74: 273-289. https://doi.org/10.2528/PIER07050904   [Google Scholar] 
  18. Johnson P, Busawon K, and Barbot JP (2008). Alternative solution of the inhomogeneous linear differential equation of order two. Journal of Mathematical Analysis and Applications, 339(1): 582-589. https://doi.org/10.1016/j.jmaa.2007.06.056   [Google Scholar] 
  19. Katatbeh QD and Belgacem FBM (2011). Applications of the Sumudu transform to fractional differential equations. Nonlinear Studies, 18(1): 99-112.   [Google Scholar] 
  20. Kim H (2016). The form of solution of ODEs with variable coefficients by means of the integral and Laplace transform. Global Journal of Pure and Applied Mathematics, 12(4): 2901-2904.   [Google Scholar] 
  21. Li D, Kar S, Moura JM, Poor HV, and Cui S (2015). Distributed Kalman filtering over massive data sets: analysis through large deviations of random Riccati equations. IEEE Transactions on Information Theory, 61(3): 1351-1372. https://doi.org/10.1109/TIT.2015.2389221   [Google Scholar] 
  22. Mohammed A and Zeleke A (2015). Extending the constant coefficient solution technique to variable coefficient ordinary differential equations. PRIMUS, 25(6): 485-494. https://doi.org/10.1080/10511970.2015.1025160   [Google Scholar] 
  23. Pala Y and Ertas MO (2017). An analytical method for solving general riccati equation. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 11(3): 125-130.   [Google Scholar] 
  24. Robin W (2007). Operator factorization and the solution of second-order linear ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 38(2): 189-211. https://doi.org/10.1080/00207390601002815   [Google Scholar] 
  25. Sarafian H (2011). A closed form solution to a special normal form of riccati equation. Advances in Pure Mathematics, 1(05): 295-296. https://doi.org/10.4236/apm.2011.15053   [Google Scholar] 
  26. Saravi M (2012). A procedure for solving some second-order linear ordinary differential equations. Applied Mathematics Letters, 25(3): 408-411. https://doi.org/10.1016/j.aml.2011.09.024   [Google Scholar] 
  27. Schwabl F (2005). Advanced quantum mechanics. Springer Science and Business Media, Berlin, Germany.   [Google Scholar] 
  28. Shivakumar PN and Zhang Y (2013). On series solutions of y ″− f (x) y= 0 and applications. Advances in difference equations, 2013(1): 47-53. https://doi.org/10.1186/1687-1847-2013-47   [Google Scholar] 
  29. Touchent KA and Belgacem FBM (2015). Nonlinear fractional partial differential equations systems solutions through a hybrid homotopy perturbation Sumudu transform method. Nonlinear Studies, 22(4): 591-600.   [Google Scholar] 
  30. Wilmer III A and Costa GB (2008). Solving second-order differential equations with variable coefficients. International Journal of Mathematical Education in Science and Technology, 39(2): 238-243. https://doi.org/10.1080/00207390701464709   [Google Scholar] 
  31. Yuce C and Kilic A (2006). Feshbach resonance and growth of a Bose-Einstein condensate. Physical Review A, 74(3): 033609. https://doi.org/10.1103/PhysRevA.74.033609   [Google Scholar] 
  32. Zill DG (2016). Differential equations with boundary-value problems. Scarborough, Nelson Education, Canada.   [Google Scholar]