International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 11 (November 2018), Pages: 24-32

----------------------------------------------

 Original Research Paper

 Title: Gravitational influences on micropolar blood flow in a bifurcated artery with mild stenosis

 Author(s): Yan Bin Tan 1, *, Norzieha Mustapha 2

 Affiliation(s):

 1Faculty of Computing and Information Technology, Tunku Abdul Rahman University College, Jalan Genting Klang, Setapak,  Kuala Lumpur, Malaysia
 2Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Kelantan, Bukit Ilmu, Machang, Kelantan, Malaysia

 https://doi.org/10.21833/ijaas.2018.11.003

 Full Text - PDF          XML

 Abstract:

A finite difference approach has been implemented to study blood flow in a bifurcated artery with a single mild stenosis under the effects of gravitational force. Streaming blood along the vessel segment is assumed to be micropolar, incompressible, laminar, unsteady and fully-developed. Geometry of the blood vessel is modelled as a finite bifurcation. An unsteady two-dimensional nonlinear model is taken where the governing equations are considered together with significant gravity term. The governing equations are solved using Matlab programming. Axial velocities and some blood flow characteristics are obtained and presented in graphical form. From the results, increment of dimensionless gravity parameter value yields lower axial velocity along the bifurcation segment, as well as higher magnitude of outer wall shear stress and lower magnitude of inner wall shear stress. At the branching junction, distortion happens which could lead to various consequences such as multiple stenosis. While gravity term is considered in the study, increment of viscosity yields lower axial velocity and wall shear stress along the vessel segment. These show that gravitational acceleration term and the branching structure are two substantial components to be considered in blood flow model. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Bifurcated artery, Blood flow, Gravity, Micropolar fluid, Stenosis

 Article History: Received 5 February 2018, Received in revised form 20 August 2018, Accepted 1 September 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.11.003

 Citation:

 Tan YB and Mustapha N (2018). Gravitational influences on micropolar blood flow in a bifurcated artery with mild stenosis. International Journal of Advanced and Applied Sciences, 5(11): 24-32

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I11/Tan.html

----------------------------------------------

 References (24) 

  1. Abdullah I and Amin N (2010). A micropolar fluid model of blood flow through a tapered artery with a stenosis. Mathematical Methods in the Applied Sciences, 33(16): 1910-1923. https://doi.org/10.1002/mma.1303   [Google Scholar]
  1. Ariman TMAND, Turk MA, and Sylvester ND (1973). Microcontinuum fluid mechanics: A review. International Journal of Engineering Science, 11(8): 905-930. https://doi.org/10.1016/0020-7225(73)90038-4   [Google Scholar]
  1. Burrowes KS and Tawhai MH (2006). Computational predictions of pulmonary blood flow gradients: Gravity versus structure. Respiratory Physiology and Neurobiology, 154(3): 515-523. https://doi.org/10.1016/j.resp.2005.11.007   [Google Scholar]  PMid:16386472
  1. Burrowes KS, Hunter PJ, and Tawhai MH (2005). Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Academic Radiology, 12(11): 1464-1474. https://doi.org/10.1016/j.acra.2005.06.004   [Google Scholar]  PMid:16253859
  1. Burton AC (1966). Introductory text: Physiology and biophysics of the circulation. Book Medical Publisher, Chicago, Illinois, USA.   [Google Scholar]
  1. Chakravarty S and Mandal PK (1997). An analysis of pulsatile flow in a model aortic bifurcation. International Journal of Engineering Science, 35(4): 409-422. https://doi.org/10.1016/S0020-7225(96)00081-X   [Google Scholar]
  1. Chakravarty S and Mandal PK (2013). Heat transfer to micropolar fluid flowing through an irregular arterial constriction. International Journal of Heat and Mass Transfer, 56(1-2): 538-551. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.044   [Google Scholar]
  1. Chakravarty S and Sen S (2005). Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries. Korea-Australia Rheology Journal, 17(2): 47-62.   [Google Scholar]
  1. Chakravarty S, Datta A, and Mandal PK (1996). Effect of body acceleration on unsteady flow of blood past a time-dependent arterial stenosis. Mathematical and Computer Modelling, 24(2): 57-74. https://doi.org/10.1016/0895-7177(96)00090-8   [Google Scholar]
  1. Devanathan R and Parvathamma S (1983). Flow of micropolar fluid through a tube with stenosis. Medical and Biological Engineering and Computing, 21(4): 438-445. https://doi.org/10.1007/BF02442631   [Google Scholar]  PMid:6888011
  1. Eringen AC (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16(1): 1-18.   [Google Scholar]
  1. Ghosh BC (1986). Motion under gravity of a micropolar viscous fluid contained between two inclined planes. Proceedings of the Indian National Science Academy, 53A(6): 760-767.   [Google Scholar]
  1. Hirt CW (1968). Heuristic stability theory for finite-difference equations. Journal of Computational Physics, 2(4): 339-355. https://doi.org/10.1016/0021-9991(68)90041-7   [Google Scholar]
  1. Ikbal MA, Chakravarty S, and Mandal PK (2011). Numerical simulation of mass transfer to micropolar fluid flow past a stenosed artery. International Journal for Numerical Methods in Fluids, 67(11): 1655-1676. https://doi.org/10.1002/fld.2438   [Google Scholar]
  1. Ku DN (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1): 399-434. https://doi.org/10.1146/annurev.fluid.29.1.399   [Google Scholar]
  1. Lou Z and Yang WJ (1993). A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. Journal of Biomechanics, 26(1): 37-49. https://doi.org/10.1016/0021-9290(93)90611-H   [Google Scholar]
  1. Lukaszewicz G (1999). Micropolar fluids: Theory and applications. Springer Science and Business Media, Birkhauser Boston, New York, USA. https://doi.org/10.1007/978-1-4612-0641-5   [Google Scholar]
  1. Markham G and Proctor MV (1983). Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance. C.E.G.B. report TPRD/L/0063/M82, London, UK.   [Google Scholar]
  1. Muthu P, Kumar BR, and Chandra P (2003). Effect of elastic wall motion on oscillatory flow of micropolar fluid in an annular tube. Archive of Applied Mechanics, 73(7): 481-494. https://doi.org/10.1007/s00419-003-0298-1   [Google Scholar]
  1. Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, and Novak V (2005). Blood pressure and blood flow variation during postural change from sitting to standing: Model development and validation. Journal of Applied Physiology, 99(4): 1523-1537. https://doi.org/10.1152/japplphysiol.00177.2005   [Google Scholar]  PMid:15860687 PMCid:PMC2094039
  1. Payne SJ (2004). Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels. Medical and Biological Engineering and Computing, 42(6): 799-806. https://doi.org/10.1007/BF02345213   [Google Scholar]  PMid:15587471
  1. Shaw S, Gorla RSR, Murthy PVSN, and Ng CO (2009). Pulsatile Casson fluid flow through a stenosed bifurcated artery. International Journal of Fluid Mechanics Research, 36(1): 43-63. https://doi.org/10.1615/InterJFluidMechRes.v36.i1.30   [Google Scholar]
  1. Tan YB, Mustapha N, and Sarifuddin (2014). Blood flow through a stenosed artery bifurcation under the effects of gravity. In the AIP Conference Proceedings, AIP, 1635(1): 241-248. https://doi.org/10.1063/1.4903590   [Google Scholar]
  1. Womersley JR (1955). Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. The Journal of Physiology, 127(3): 553-563.
    https://doi.org/10.1113/jphysiol.1955.sp005276   [Google Scholar]  PMid:14368548 PMCid:PMC1365740