International journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN:2313-626X

Frequency: 12

line decor
  
line decor

 Volume 5, Issue 10 (October 2018), Pages: 28-34

----------------------------------------------

 Original Research Paper

 Title: Caputo MSM fractional differentiation of extended Mittag-Leffler function

 Author(s): Aneela Nadir *, Adnan Khan

 Affiliation(s):

 Department of Mathematics, National College of Business Administration and Economics (NCBAandE), Lahore, Pakistan

 https://doi.org/10.21833/ijaas.2018.10.005

 Full Text - PDF          XML

 Abstract:

Recently, many researchers are interested in the investigation of an extended form of special functions like Gamma function, Beta function, Gauss hypergeometric function, Confluent hypergeometric function and Mittag-Leffler function etc. Here, in this paper, the main objective is to find the composition of Caputo MSM fractional differential of the extended form of Mittag-Leffler function in terms of extended Beta function. Further, in this sequel, some corollaries and consequences are shown that are the special case of our main findings. 

 © 2018 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Extended Mittag-Leffler function, Caputo MSM fractional different-ion, Hadmard product

 Article History: Received 28 April 2018, Received in revised form 29 July 2018, Accepted 5 August 2018

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2018.10.005

 Citation:

  Nadir A and Khan A (2018). Caputo MSM fractional differentiation of extended Mittag-Leffler function. International Journal of Advanced and Applied Sciences, 5(10): 28-34

 Permanent Link:

 http://www.science-gate.com/IJAAS/2018/V5I10/Aneela.html

----------------------------------------------

 References (28) 

  1. Agarwal P and Choi J (2016). Fractional calculus operators and their image formulas. Journal of the Korean Mathematical Society, 53(5): 1183-1210. https://doi.org/10.4134/JKMS.j150458   [Google Scholar]
  1. Chaudhry MA, Qadir A, Rafique M, and Zubair SM (1997). Extension of Euler's beta function. Journal of Computational and Applied Mathematics, 78(1): 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1   [Google Scholar]
  1. Chaudhry MA, Qadir A, Srivastava HM, and Paris RB (2004). Extended hypergeometric and confluent hypergeometric functions. Applied Mathematics and Computation, 159(2): 589-602. https://doi.org/10.1016/j.amc.2003.09.017   [Google Scholar]
  1. Choi J and Agarwal P (2014). Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstract and Applied Analysis, 2014: Article ID 735946, 7 pages. https://doi.org/10.1155/2014/735946   [Google Scholar]
  1. Choi J and Agarwal P (2015). Certain integral transforms for the incomplete functions. Applied Mathematics and Information Sciences, 9(4): 2161-2167.   [Google Scholar]
  1. Desai R, Salehbhai IA, and Shukla AK (2016). Note on generalized Mittag-Leffler function. SpringerPlus, 5:683. https://doi.org/10.1186/s40064-016-2299-x   [Google Scholar]
  1. Gehlot KS (2013). Integral representation and certain properties of M–Series associated with fractional calculus. International Mathematical Forum, 8(9): 415-426.   [Google Scholar]
  1. Gupta A and Parihar CL (2017). Saigo's k-fractional calculus operators. Malaya Journal of Matematik, 5(3): 494-504.   [Google Scholar]
  1. Kilbas AA, Saigo M, and Saxena RK (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms and Special Functions, 15(1): 31-49. https://doi.org/10.1080/10652460310001600717   [Google Scholar]
  1. Luo MJ and Raina RK (2013). Extended generalized hypergeometric functions and their applications. Bulletin of Mathematical Analysis and Applications, 5(4): 65-77.   [Google Scholar]
  1. Mittag-Leffler GM (1903). Sur la nouvelle function Eα (x). Comptes Rendus Mathématique, 137: 554-558.   [Google Scholar]
  1. Mittal E, Pandey RM, and Joshi S (2016). On extension of Mittag-Leffler function. Applications and Applied Mathematics, 11(1): 307-316.   [Google Scholar]
  1. Nadir A, Khan A, and Kalim M (2014). Integral transforms of the generalized Mittag-Leffler function. Applied Mathematical Sciences, 8(103): 5145-5154. https://doi.org/10.12988/ams.2014.43218   [Google Scholar]
  1. Özarslan MA and Yılmaz B (2014). The extended Mittag-Leffler function and its properties. Journal of Inequalities and Applications, 2014: 85. https://doi.org/10.1186/1029-242X-2014-85   [Google Scholar]
  1. Parmar RK (2015). A class of extended Mittag–Leffler functions and their properties related to integral transforms and fractional calculus. Mathematics, 3(4): 1069-1082. https://doi.org/10.3390/math3041069   [Google Scholar]
  1. Pohlen T (2009). The Hadamard product and universal power series. Phd Dissertation, Universität Trier, Trier, Germany.   [Google Scholar]
  1. Prabhakar TR (1971). A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Mathematical Journal, 19: 7-15.   [Google Scholar]
  1. Rahman G, Baleanu D, Qurashi MA, Purohit SD, Mubeen S, and Arshad M (2017a). The extended Mittag-Leffler Function via fractional calculus. Journal of Nonlinear Sciences and Applications, 10: 4244-4253. https://doi.org/10.22436/jnsa.010.08.19   [Google Scholar]
  1. Rahman G, Ghaffar A, Mubeen S, Arshad M, and Khan SU (2017b). The composition of extended Mittag-Leffler functions with pathway integral operator. Advances in Difference Equations, 2017: 176. https://doi.org/10.1186/s13662-017-1237-8   [Google Scholar]
  1. Rao A, Garg M, and Kalla SL (2010). Caputo-type fractional derivative of a hypergeometric integral operator. Kuwait Journal of Science and Engineering, 37(1A): 15-29.   [Google Scholar]
  1. Saigo M and Maeda N (1998). More generalization of fractional calculus. In: Rusev P, Dimovski I, and Kiryakova V (Eds.), Transform Methods and Special Functions: 386-400. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria.   [Google Scholar] PMCid:PMC106901
  1. Samko SG, Kilbas AA, and Marichev OI (1993). Fractional integrals and derivatives: Theory and applications. Gordon and Breach, Amsterdam, Netherlands.   [Google Scholar]
  1. Saxena RK and Parmar RK (2017). Fractional integration and differentiation of the generalized mathieu series. Axioms, 6(3): 18. https://doi.org/10.3390/axioms6030018   [Google Scholar]
  1. Shishkina EL and Sitnik SM (2017). On fractional powers of Bessel operators. Journal of Inequalities and Special Functions, 8(1): 49-67.   [Google Scholar]
  1. Singh DK (2013). On extended M-series. Malaya Journal of Matematik, 1(1): 57-69.   [Google Scholar]
  1. Srivastava HM and Agarwal P (2013). Certain fractional integral operators and the generalized incomplete hypergeometric functions. Applications and Applied Mathematics, 8(2): 333-345.   [Google Scholar]
  1. Srivastava HM, Parmar RK, and Chopra P (2012). A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions. Axioms, 1(3): 238-258. https://doi.org/10.3390/axioms1030238   [Google Scholar]
  1. Suthar DL, Parmar RK, and Purohit SD (2017). Fractional calculus with complex order and generalized hypergeometric functions. Nonlinear Science Letters A, 8: 156-161.   [Google Scholar]